您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2010年高考数学真题-圆锥曲线(5)
2010年全国各地高考数学真题分章节分类汇编第10部分:圆锥曲线(解答3)8.(2010年高考全国卷I理科21)(本小题满分12分)(注意:在试题卷上作答无效.........)已知抛物线2:4Cyx的焦点为F,过点(1,0)K的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设89FAFB,求BDK的内切圆M的方程.【命题意图】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.【解析】(21)解:设11(,)Axy,22(,)Bxy,11(,)Dxy,l的方程为1(0)xmym.(Ⅱ)由①知,21212(1)(1)42xxmymym1212(1)(1)1.xxmymy因为11(1,),FAxyuur22(1,)FBxyuur,212121212(1)(1)()1484FAFBxxyyxxxxmuuruur故28849m,解得43m所以l的方程为3430,3430xyxy又由①知2214(4)4473yym故直线BD的斜率21437yy,因而直线BD的方程为3730,3730.xyxy因为KF为BKD的平分线,故可设圆心(,0)(11)Mtt,(,0)Mt到l及BD的距离分别为3131,54tt.由313154tt得19t,或9t(舍去),故圆M的半径31253tr.所以圆M的方程为2214()99xy.9.(2010年高考四川卷理科20)(本小题满分12分)已知定点A(-1,0),F(2,0),定直线l:x=12,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N(Ⅰ)求E的方程;(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.10.(2010年高考江苏卷试题18)(本小题满分16分)在平面直角坐标系xoy中,如图,已知椭圆15922yx的左、右顶点为A、B,右焦点为F。设过点T(mt,)的直线TA、TB与椭圆分别交于点M),(11yx、),(22yxN,其中m0,0,021yy。(1)设动点P满足422PBPF,求点P的轨迹;(2)设31,221xx,求点T的坐标;(3)设9t,求证:直线MN必过x轴上的一定点(其坐标与m无关)。[解析]本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。满分16分。(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。由422PBPF,得2222(2)[(3)]4,xyxy化简得92x。故所求点P的轨迹为直线92x。(2)将31,221xx分别代入椭圆方程,以及0,021yy得:M(2,53)、N(13,209)直线MTA方程为:0352303yx,即113yx,直线NTB方程为:032010393yx,即5562yx。联立方程组,解得:7103xy,所以点T的坐标为10(7,)3。(3)点T的坐标为(9,)m直线MTA方程为:03093yxm,即(3)12myx,直线NTB方程为:03093yxm,即(3)6myx。分别与椭圆15922yx联立方程组,同时考虑到123,3xx,解得:2223(80)40(,)8080mmMmm、2223(20)20(,)2020mmNmm。(方法一)当12xx时,直线MN方程为:222222222203(20)202040203(80)3(20)80208020mmyxmmmmmmmmmm令0y,解得:1x。此时必过点D(1,0);当12xx时,直线MN方程为:1x,与x轴交点为D(1,0)。所以直线MN必过x轴上的一定点D(1,0)。(方法二)若12xx,则由222224033608020mmmm及0m,得210m,此时直线MN的方程为1x,过点D(1,0)。若12xx,则210m,直线MD的斜率2222401080240340180MDmmmkmmm,直线ND的斜率222220102036040120NDmmmkmmm,得MDNDkk,所以直线MN过D点。因此,直线MN必过x轴上的点(1,0)。11.(2010年全国高考宁夏卷20)(本小题满分12分)设12,FF分别是椭圆2222:1(0)xyEabab的左、右焦点,过1F斜率为1的直线i与E相交于,AB两点,且22,,AFABBF成等差数列。(1)求E的离心率;(2)设点(0,1)p满足PAPB,求E的方程(20.)解:(I)由椭圆定义知224AFBFABa,又222ABAFBF,得43ABal的方程为yxc,其中22cab。设11,Axy,22,Bxy,则A、B两点坐标满足方程组22221yxcxyab化简的222222220abxacxacb则2222121222222,acbacxxxxabab因为直线AB斜率为1,所以AB2211212224xxxxxx得22244,3abaab故222ab所以E的离心率2222cabeaa(II)设AB的中点为00,Nxy,由(I)知212022223xxacxcab,003cyxc。由PAPB,得1PNk,即0011yx得3c,从而32,3ab故椭圆E的方程为221189xy。12.(2010年高考陕西卷理科20)(本小题满分13分)如图,椭圆C:的顶点为A1,A2,B1,B2,焦点为F1,F2,|A1B1|=,(Ⅰ)求椭圆C的方程;(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由。解(1)由知a2+b2=7,①由知a=2c,②又b2=a2-c2③由①②③解得a2=4,b2=3,故椭圆C的方程为。(2)设A,B两点的坐标分别为(x1,y1)(x2,y2)假设使成立的直线l不存在,(1)当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点且得[来源:学。科。网],即m2=k2+1.∵,13.(2010年高考北京市理科19)(本小题共14分)@ks@5u.com在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于13.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。(19)(共14分)@ks@5u.com(I)解:因为点B与A(1,1)关于原点O对称,所以点B得坐标为(1,1).设点P的坐标为(,)xy由题意得111113yyxx化简得2234(1)xyx.故动点P的轨迹方程为2234(1)xyx(II)解法一:设点P的坐标为00(,)xy,点M,N得坐标分别为(3,)My,(3,)Ny.则直线AP的方程为0011(1)1yyxx,直线BP的方程为0011(1)1yyxx令3x得000431Myxyx,000231Nyxyx.于是PMN得面积2000020||(3)1||(3)2|1|PMNMNxyxSyyxx又直线AB的方程为0xy,||22AB,点P到直线AB的距离00||2xyd.于是PAB的面积001||||2PABSABdxy当PABPMNSS时,得20000020||(3)|||1|xyxxyx又00||0xy,所以20(3)x=20|1|x,解得05|3x。因为220034xy,所以0339y故存在点P使得PAB与PMN的面积相等,此时点P的坐标为533(,)39.解法二:若存在点P使得PAB与PMN的面积相等,设点P的坐标为00(,)xy则11||||sin||||sin22PAPBAPBPMPNMPN.因为sinsinAPBMPN,所以||||||||PAPNPMPB所以000|1||3||3||1|xxxx即2200(3)|1|xx,解得0x53因为220034xy,所以0339y故存在点PS使得PAB与PMN的面积相等,此时点P的坐标为533(,)39.
本文标题:2010年高考数学真题-圆锥曲线(5)
链接地址:https://www.777doc.com/doc-6993515 .html