您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 压缩感知中测量矩阵构造综述_王强
2016-08-062016-09-06。E51305454。1992—、1955—、1979—、1988—、1987—、。1001-9081201701-0188-09DOI10.11772/j.issn.1001-9081.2017.01.0188*050003*ZPL1955@163.com。、、、、、、。TP301.6ASurveyonconstructionofmeasurementmatricesincompressivesensingWANGQiangZHANGPeilin*WANGHuaiguangYANGWangcanCHENYanlongDepartmentofVehiclesandElectricalEngineeringOrdnanceEngineeringCollegeShijiazhuangHebei050003ChinaAbstractTheconstructionofmeasurementmatrixincompressivesensingvarieswidelyandisonthedevelopmentconstantly.Inordertosortouttheresearchresultsandacquirethedevelopmenttrendofmeasurementmatrixtheprocessofmeasurementmatrixconstructionwasintroducedsystematically.Firstlycomparedwiththetraditionalsignalacquisitiontheorytheadvantagesofhighresourceutilizationandsmallstoragespacewereexpounded.Secondlyonthebasisoftheframeworkofcompressivesensingandfocusingonfouraspectstheconstructionprinciplethegenerationmethodthestructuredesignofmeasurementmatrixandtheoptimalmethodtheconstructionofmeasurementmatrixincompressivesensingwassummarizedandadvantagesofdifferentprinciplesgenerationsandstructureswereintroducedindetail.Finallybasedontheresearchresultsthedevelopmentdirectionsofmeasurementmatrixwereprospected.KeywordsCompressiveSensingCSmeasurementmatrixRestrictedIsometryPropertyRIPsignalreconstructionsignalacquisition0。。、、。。Candes1-2。3。、4。、“”5。、、6。、7。MethodofOptimalDirectionsMOD8、K-K-SingularValueDecompositionK-SVD9。JournalofComputerApplications2017371188-196ISSN1001-9081CODENJYIIDU2017-01-10http//.joca.cnCandes10RestrictedIsometryConstantRICCandes11RestrictedIsometryPropertyRIP。RIP。、。NP。。、。12、13、14。15、16、17。。。52、136。。1x∈RNNxNnxnn=12…NΨ=Ψ1Ψ2…ΨNΨiNxx=∑Ni=1siΨi1ssiNsisi=〈xΨi〉=ΨiTx2T。xsΨ。ΨK-sKNxK。sKN-KΨK-。ΦΦ∈RM×NMNΦMΦjj=12…NΦTj∈RNMyy=Φx=ΦΨs=Θs3Θ=ΦΨ。MNyxsK-yss。、1。1Fig.1Signalsacquisitionandtransmission。、、。2xΨK-ss。Θs。ΨxΨIΘ=ΦΨ=Φ2。2Fig.2MeasurementprocessofcompressivesensingMyΦxyK≤OMlogNRIP18RIP。33。1024512RIP2.75×10-133c1024120RIP1.183b。RIPRIPRIP1、。98113Fig.3Compressivesensingforsparsesignals2.1RIP2.1.1RICArmin19RICRIC。1K=12…ΦRICδK41-δK‖x‖2l2≤‖Φx‖2l2≤1+δK‖x‖2l24xK-。ΨδK。2ΨK-K=12…ΘRICδK51-δK‖x‖2l2≤‖Θx‖2l2≤1+δK‖x‖2l25K-xδ2K。3T12…N|T|≤2KΦTΦTc=xjj∈Tδ2K61-δ2K‖c‖2l2≤‖ΦTc‖2l2≤1+δ2K‖c‖2l26Ψδ2KΦTδ2K71-δ2K‖c‖2l2≤‖ΘTc‖2l2≤1+δ2K‖c‖2l272.1.2RIPRICRIPI0<δK<1RIPδ2K槡2-111。RIP。RIPRIPRIP。20Johnson-Lindenstrauss21RIP。2.2RIP1RIPl1On3OKlogN/K。Nchirps16、22。RIPRIPRIP123StatisticRestrictedIsometryPropertyStRIPUniqueness-guaranteedStatisticRestrictedIsometryPropertyUStRIP24。Berinde23RIPRIP1。RIP23l2l1RIP1。4RIP125。ΦVKεM×NK-x∈RN1-2εd‖x‖1≤‖Φx‖1≤d‖x‖18dΦ1ε。RIP1RIP。RIP1RIP。RIP。2.3RIPDonoho26。Tropp27BasisPursuitBP、OrthogonalMatchingPursuitOMP09137。Donoho26。5Ψμμ1μ=maxi≠j〈ΨiΨj〉μ1K=maxΛ=KjΛ∑i∈Λ〈ΨiΨj{〉91μ≥N-M/N-1M槡10。xx=ψs11ΦΘ=ΦΨ‖s‖0<121+1μΘ12Θ。RIPRauhut282RIP。2μμ1RICδKδK≤μ1K-1≤K-1·μ13。13RIP。2.4StRIP/UStRIPRICRIPCalderbankStRIPUStRIP24StRIP/UStRIPStRIP/UStRIP。6ΦM×NK-x∈RN1-δ1-ε‖x‖2≤‖Φx/M‖2≤1+ε‖x‖214ΦKεδ-StRIP。StRIPUStRIP。7M×NΦKεδ-StRIP151-δββ∈RNΦα=Φβ15ΦKεδ-UStRIP。StRIP/UStRIPη-StRIP-able。8η-StRIP-able0<η<1Φ。1Φ。∑Nj=1ΦjaΦjb=0a≠b16∑Nj=1Φja=017ja、b。2Φ“”Φj″aj″∈12…Njj'xΦj″a=Φj'aΦja183j∈2…N∑xΦja2≤M2-η19241~3StRIP/UStRIP。η-StRIP-ableChirp16、Bose-Chaudhuri-Hocquenghem24。StRIP/UStRIP。RIP。Spark29、30SparkSpark。。3、。3.13.1.1Candes2K≤OMlogNRIP18K-。0、1/nΦij~N01/M20i、ji、j。3.1.2RIP。1/2Φij=1槡/MP1=1/2-1槡/MP2=1/{22131、19111-2exp-c1MRIP。RIP。32、2、33。RIP34。3.23.2.1Xu224。A1A2。A1A2。A1NxA2My。M≤NA1、A2CCij=1ij0{22i=12…Mj=12…N。4kε-Fig.4kε-expandergraph3CKε-4VA1A2|A1|=N|A2|=MA1A2。A1dSA1|S|≤KNSNS>1-ε|S|。Jarfarpour251≤K≤N/2Kε-dMd=OlgN/K/εM=OKlgN/K/ε2{23CK-RIP1。3.2.2Devore35。pFpFpFpF01…p-1。p×pEEp2E。r0<r<pPrrPr=Qt=a0+a1t+…+antran∈F24Prpr+1Q∈PrQF→FEt→QtQt=Et*25t*t。E0001…0p-11011…1p-1p-10p-11…p-1p-126EtQt1Ep2×1vQvQp1p1pr+1p2×pr+1。Devore35K<p/r+1RICδK=K-1r/pRIP。3.2.3。Nam36OpticalOrthogonalCodeOOCBrickell37Nam36OOCOOC。9nωλOOCnvi0≤i≤n-1。ωτ∈0n-1θvivjτ≤λτ=0i=j27θsisjτ=∑n-1t=0vitvjtτ28n。GGnωωn。a=att∈01…n-1t∈Gat=1at=0a∈nω1OOC。OOC1S0-1vi0≤i≤n-1nωλOOCvinSB。2v×vv=ω+δ0≤δ≤ωHB1H0v0n×vnSBe。3D=1/槡ωBe。36DO1/槡ωK-xK=OM/logN1-N-1。Bose-Chaudhuri-Hocquenghem38、29137Chirp16、39、Reed-Muller24、Berlekamp-Justesen40Low-DensityParity-CheckLDPC41。4。Do42。、、。4.143。±1g=g1g2…gnu29U=unun-1…u2u1u1un…u3u2um-1um-2…um29Bajwa44PuM≥K3lnN/K3KRICδ3K∈01/3RIP。Chirps44。4.2RIP、。。1930ΦM×N。ΦjDistinctBlockDiagonalDBDRepeatBlockDiagonalRBD。Armin19RIP。、46、47RIP。4.3。Amini38。4VM×N1VpμVWp×N2ZM×N1N2μZ≤maxμVμW。5ViWi。5Fig.5Nestedmatrices436、48。5。5.1GramElad49ΘGramΦΨ。μΘ=maxi≠j〈ΘiΘj〉31ΘΘiΘiGramΞΞ=ΘTΘ32ΞΞΞijμmaxΘ=maxΞiji≠j。ΞΞΞij'=γΞijΞij≥thγsignΞijth>Ξij≥γthΞijΞij<γ{th333911γth。Ξ'Θ'|Θ'-ΦΨ|2FΦ'。49Elad。EladΞ50。32Ξ0ΞΞ=ΨTΦTΦΨ=I3434ΨΨTΦTΦΨΨT=ΨΨT35ΨΨTU'ΛU'T=ΨΨTΓ=ΦU'minΓ‖ΛΓTΓΛ-Λ‖2F36ΓΦ=ΓU'T。36。Gram51、52。Gram。5.2Gram。53K-SVD-。1Ψ。2ΨGramΦ。3ΘOMP。4K-SVDΨΦ。54、55。。61RIPRIP、J-RRIP。2、、。3。4。。。7、、、、。、、。、、、。References1CANDESEJROMBERGJ.Quantitativerobustuncertaintyprinci-plesandoptimallysparsedecompositionsJ.FoundationofCom-putationalMathematics200662227-254.2CANDESEJROMBERGJKTAOT.Robustuncertaintyprinci-plesexactsignalreconstructionfromhighincompletefrequencyin-formationJ.IEEE
本文标题:压缩感知中测量矩阵构造综述_王强
链接地址:https://www.777doc.com/doc-6995215 .html