您好,欢迎访问三七文档
1基因工程原理内容提要1.基因工程又称基因操作、重组DNA技术,是P.Berg等于1972年创建的。基因工程技术涉及的基本过程包括“切、连、转、选”。该技术有两个基本的特点∶分子水平上的操作和细胞水平上的表达。2.基因工程中使用多种工具酶,包括限制性内切核酸酶、DNA连接酶和其他一些参与DNA合成与修饰的酶类。3.限制性内切核酸酶是基因工程中最重要的工具酶,属于水解酶类。根据限制性内切核酸酶的作用特点,被分为三大类。Ⅱ类限制性内切核酸酶是基因工程中最常用的酶,该类酶的分子量小,专一性强,切割的方式有平切和交错切,作用时需要Mg++作辅助因子,但不需要ATP和SAM。第一个被分离的Ⅱ类酶是HindⅡ。4.连接酶是一类用于核酸分子连接形成磷酸二酯键的核酸酶,有DNA连接酶和RNA连接酶之分。基因工程中使用的连接酶来自于原核生物,有两种类型的DNA连接酶∶E.coliDNA连接酶和T4-DNA连接酶。基因工程中使用的主要是T4DNA连接酶,它是从T4噬菌体感染的E.coli中分离的一种单链多肽酶,既能进行粘性末端连接又能进行平末端连接。5.载体是能将分离或合成的基因导入细胞的DNA分子,有三种主要类型∶质粒DNA、病毒DNA、科斯质粒,在这三种类型的基础上,根据不同的目的,出现了各种类型的改造载体。6.DNA重组连接的方法大致分为四种:粘性末端连接、平末端连接、同聚物接尾连接、接头连接法。粘性末端连接法是最常用的DNA连接方法,是指具有相同粘性末端的两个双链DNA分子在DNA连接酶的作用下,连接成为一个杂合双链DNA。平末端连接是指在T4DNA连接酶的作用下,将两个具有平末端的双链DNA分子连接成杂种DNA分子。同聚物加尾连接就是利用末端转移酶在载体及外源双链DNA的3'端各加上一段寡聚核苷酸,制成人工粘性末端,外源DNA和载体DNA分子要分别加上不同的寡聚核苷酸,如dA(dG)和dT(dC),然后在DNA连接酶的作用下,连接成为重组的DNA。这种方法可适用于任何来源的DNA片段,但方法较繁,需要λ核酸外切酶、S1核酶、末端转移酶等协同作用。将人工合成的或来源于现有质粒的一小段DNA分子(在这一小段DNA分子上有某种限制性内切酶的识别序列),加到载体或外源DNA的分子上,然后通过酶切制造黏性末端的方法称为接头连接法。7.基因文库分为基因组文库、cDNA文库等,是指在一种载体群体中,随机地收集着某一生物DNA的各种克隆片段,理想地包含着该物种的全部遗传信息。8.DNA重组分子在体外构建完成后,必须导入特定的受体细胞,使之无性繁殖并高效表达外源基因或直接改变其遗传性状,这个导入过程及操作统称为重组DNA分子的转化。目前常用的诱导感受态转化的方法是CaCl2法(图3-20),此外也可以用基因枪等方法转化外源DNA。9.重组体筛选有遗传学方法、核酸杂交筛选法等。10.基因工程技术是现代生物技术的核心,目前在工业、农业和医疗中已经显示了巨大的应用前景,并形成了一大批生物技术产业。基因工程是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性,获得新品种,生产新产品;或是研究基因的结构和功能,揭示生命活动规律。基因工程技术诞生于20世纪70年代初,它是一门崭新的生物技术科学,它的创立和发展使生命科学产生了一次重大飞跃,证明并实现了基因的可操作性,使人类从简单地利用天然生物资源走向定向改造和创造具有新品质的生物资源的时代。基因工程技术诞生至今已经取得了辉煌的成就,成为当今生命科学研究领域中最有生命力和最引人注目的前沿学科之一,基因工程也是当今新的产业革命的一个重要组成部分。2第一节基因工程技术的诞生基因工程又称基因操作(genemanipulation),重组DNA(recombinantDNA)技术,是70年代发展起来的遗传学的一个分支学科。一、基因工程技术的诞生1972年,P..Berg等在PNAS上发表了题为∶“将新的遗传信息插入SV40病毒DNA的生物化学方法:含有λ噬菌体基因和E.coli半乳糖操纵子的环状SV40DNA”,标志着基因工程技术的诞生。SV40病毒是猿猴病毒,是一种直径为450的球形病毒,分子量为28×106道尔顿。SV40的DNA是环状双链结构,全长5243个碱基对,编码三个衣壳蛋白VP1、VP2、VP3和一个T抗原。SV40DNA上有一个限制性内切酶E.coRⅠ的切点。Berg等首先用化学方法构建了一个二聚体的环状SV40DNA(图3-1)。图3-1重组的SV40二聚体的构建(引自Berget.al,1972)当时所用的连接方法是同聚物谱尾法,重组体的鉴定主要是通过电子显微镜比较分子量大小。当获得二聚体SV40DNA后,Berg等就证明了环状DNA被内切酶切成线性DNA后能够重新环化,并且能够同另外的分子重组。于是他们进行第二步的实验就是从λdvgalDNA中制备含有E.coli的半乳糖操纵子DNA,用上述同样的方法进行重组连接,并获得成功。Berg等的工作是人类第一次在体外给遗传物质动手术,标志着一个新时代的到来,为此他获得了1980年诺贝尔化学奖。二、基因操作的基本过程和特点基因工程的操作可用图3-2表示∶图3-2基因工程的基本过程(引自Old&Primrose,1980)3它所涉及的过程可用“分(合成)、切、连、转、选、鉴”六个字表示。分(合成)∶指DNA的制备,包括从生物体中分离或人工合成。分离制备或合成制备DNA的方法都有很多种。切∶即在体外将DNA进行切割,使之片段化或线性化。连∶即在体外将不同来源的DNA分子重新连接起来,构建重组DNA分子。转∶即将重组连接的DNA分子通过一定的方法重新送入或细胞中进行扩增和表达。选∶从转化的全群体中将所需要的目的克隆挑选出来;鉴∶就是进行对筛选出来的重组体进行鉴定,因为有些重组体并非是所需要的,必需通过分析鉴定。基因工程有两个基本的特点∶分子水平上的操作和细胞水平上的表达。遗传重组是生物进化的推动力,自然界中发生的遗传重组主要是靠有性生殖。基因工程技术的诞生使人们能够在试管里进行分子水平上的操作,构建在生物体内难以进行的重组,然后将重组的遗传物质引入相应的宿主细胞,让其在宿主细胞中进行工作。这实际上是进行无性繁殖,即克隆,所以基因工程通常有称为基因克隆。第二节限制性内切核酸酶外科医生给患者动手术需要手术刀,基因工程师们给DNA分子(基因)动手术需要分子手术刀,这就是工具酶。基因工程中使用的工具酶很多,包括限制性内切核酸酶、DNA连接酶和其他一些参与DNA合成与修饰的酶类,最重要的是限制性内切核酸酶。基因工程上把那些具有识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶统称为限制性内切核酸酶。一、限制性内切核酸酶的发现1952年Luria、Human在T偶数噬菌体、1953年weigle、Bertani在λ噬菌体对大肠杆菌的感染实验中发现了细菌的限制和修饰现象。正是对限制和修饰现象的深入研究,导致限制性内切核酸酶的发现。噬菌体在某一特定细菌宿主中生长的能力,取决于它最终在其中繁殖的细菌是什么菌株。例如,将A噬菌体从一株大肠杆菌转移到另外一株,其生长效率往往会削弱,对这两个菌株的滴定度可差好几个数量级。第二个菌株释放的噬菌体能百分之百再感染同类菌株,但是若先将它们感染原来的宿主菌,再将释放的子代噬菌体重新感染第二个菌株时,感染率要大大下降。此种现象即为宿主控制的限制作用(host—Controlledrestriction)。用放射性同位素标记的噬菌体进行的实验结果表明,在受感染的宿主细胞中,噬菌体生长的限制伴有噬菌体DNA的迅速降解,然而,用作繁殖噬菌体的感染宿主菌株并不导致类似的噬菌体DNA的降解。如果某一细菌细胞具有一种能选择性降解来自侵染病毒(或其他来源)的核酸酶,那么,它必须能将这种外来DNA同它自己的DNA区分开来,之所以能够如此,乃是通过稍为宿主控制的修饰作用(host-controlledmodification)。因此,限制(restriction)作用是指细菌的限制性核酸酶对DNA的分解作用,限制一般是指对外源DNA侵入的限制。修饰(modification)作用是指细菌的修饰酶对于DNA碱基结构改变的作用(如甲基化),经修饰酶作用后的DNA可免遭其自身所具有的限制酶的分解。到20世纪60年代中期,科学家推测细菌中有限制-修饰系统(restriction—modificationsystem.R-Msystem)。该系统中有作用于同一DNA的两种酶,即分解DNA的限制酶和改变DNA碱基结构使其免遭限制酶分解的修饰酶,而且,这两种酶作用于同一DNA的相同部位。一般说来,不同种的细菌或不同种的细菌菌株具有不同的限制酶和修饰酶组成的限制-修饰系统。1968年,Meselson从E.coliK株中分离出了第一个限制酶EcoK,同年Linn和Aeber从E.coliB株中分离到限制酶EcoB。遗憾的是,由于EcoK和EcoB这两种酶的识别和切割位点不够专一,在基因工程中意义不大。1970年,Smith和Wilcox从流感嗜血杆菌中分离到一种限制性酶,能够特异性地切割DNA,这个酶后来命名为HindⅡ,这是第一个分离到的Ⅱ类限制性内切核酸酶。由于这类酶的识别序列和切割位点特异性很强,对于分离特定的DNA片段就具有特别的意义。二、限制性内切核酸酶的命名和分类(一)限制性内切核酸酶的命名按照国际命名法,限制性内切核酸酶属于水解酶类。由于限制性酶的数量众多,而且越来越多,并且在同一种菌中发现几种酶。为了避免混淆,1973年Smith和Nathans对内切酶的命名提出建议,1980年,Roberts对限制性酶的命名进行分类和系统化。4限制性酶采用三字母的命名原则,即属名+种名+株名的个一个首字母,再加上序号,将限制性内切核酸酶的命名要点列于表3-1。表3-1限制性内切核酸酶的命名要点条目要点基本原则3-4个字母组成,方式是:属名+种名+株名+序号首字母取属名的第一个字母,且大写第二字母取种名的第一个字母,小写第三字母①取种名的第二个字母,小写;②若种名有词头,且已命名过内切酶,则取词头后的第一字母代替第四字母若有株名,株名则作为第四字母,是否大小写,根据原来的情况而定顺序号若在同一菌株中分离了几个限制性内切核酸酶,则按先后顺序冠以I、II、III,.....等如:EcoK:EscherichiacoliK(大肠杆菌K株)(二)限制性内切核酸酶的分类限制性内切核酸酶的作用特点,将它们分为三大类。1.I类限制性内切核酸酶I类限制性内切核酸酶的分子量较大,一般在30万道尔顿以上,通常由三个不同的亚基所组成。例如限制性酶EcoB是由R(135kD),M(62kD)和S(55kD)三种亚基组成的复合酶,这三个亚基分别由不同的基因编码。全酶的总分子量为449kD,共5个亚基,其中R亚基和M亚基各两分子。Ⅰ类酶不仅是一种核酸内切酶,同时在酶分子上还具有甲基化酶和ATPase的活性,所以是具有多种酶活性的复合酶类。作用时除了需要Mg++作辅助因子外,还要求ATP和S腺苷甲硫氨酸(SAM)的存在。Ⅰ类酶具有特异的识别序列,大约15个碱基对。Ⅰ类酶虽然能够在一定序列上识别DNA分子,并能同DNA分子作用,因其识别DNA后,要朝一个方向或两个方向移动一段距离(通常为1000个碱基左右),并且要形成一个环才能切割DNA(图3-3),所以识别位点和切割位点不一致,产生的片段较大。图3-3I类酶的作用方式(引自Lewin,1997)2.Ⅲ类限制性内切核酸酶Ⅲ类限制性内切核酸酶也是基因工程中不常用的酶,分子量和亚基组成类似于Ⅰ类酶,作用方式基本同Ⅱ类酶。如EcoP1是由两个亚基组成,一个亚基(M亚基)负责位点识别和修饰。另一个亚基(R亚基)具有核酸酶的活性(图3-5)。切割DNA时需要ATP,Mg2+,也能被SAM激活,但并非必需。
本文标题:基因工程原理
链接地址:https://www.777doc.com/doc-7038658 .html