您好,欢迎访问三七文档
1小学数学几何专题平行四边形概念:两组对边分别平行的四边形叫做平行四边形。性质:平行四边形的对边相等,对角相等。面积公式:面积=底×高,S=ah三角形面积公式:面积=底×高÷2,S=ah÷2梯形概念:只有一组对边互相平行的四边形叫梯形。有一个角是直角的梯形叫做直角梯形。两腰相等的梯形叫做等腰梯形。面积公式:面积=(上底+下底)×高÷2=中位线×高S=(a+b)h÷2平面图形面积公式汇总常见平面图形的面积公式汇总图形面积公式三角形面积=底×高÷2长方形面积=长×宽正方形面积=边长×边长平行四边形面积=底×高梯形面积=(上底+下底)×高÷2⑴求四边形ABCD的面积。5D(单位:厘米)A45°B7C⑴求四边形ABCD的面积。D(单位:厘米)A445°B7CAED⑵已知正方形EFGH的边长为7厘米,求正方形ABCDFH的面积。BGC⑶如图,一个正方形分5成五部分,中间是一个小45°正方形,其余四个是相同的图形,每一个都是等腰45°45°直角三角形缺了一个角,求中间的小正方形的面积。45°⑷求阴影部分的面积。5(单位:厘米)3532平面图形面积计算的基本方法⑴等腰直角三角形的面积计算C性质:∠A=∠B=45°,∠C=90°,ADBAC=BC,CD=AD=DB=AB÷2,四个完全相同的等腰直角三角形可以拼成一个以等腰直角三角形的斜边为边长的正方形。面积计算:S=直角边2÷2S=AC2÷2=斜边2÷4=AB2÷4⑵割补法:将一个较复杂的图形,分割或补成一个或多个简单的可计算的图形,计算出这几个简单图形的面积之后,再相加或相减。例:右图中,ABCDB7A和DEFG都是正方形,求△BDF的面积。GF(单位:厘米)4解:由于△BDF的底CDE和高都是未知的,因此,表面上我们无法直接运用公式计算面积。为此,我们可以运用割补法,将△BDF分割成△BDG、△DFG和△BGF,先分别求出这三个小三角形的面积,再相加得到△BDF的面积。S△BDG=DG×AB÷2=4×7÷2=14(厘米2)S△DFG=DG×GF÷2=4×4÷2=8(厘米2)S△BGF=GF×AG÷2=4×(7-4)÷2=6(厘米2)S△BDF=14+8+6=28(厘米2)答。⑸把长方形纸折成如图形状,求阴影部分的面积。18(单位:厘米)822⑹如图,直角三角形中4有一个矩形,求矩形的面积。(单位:厘米)6⑺如图,ABCD是直角A3D梯形,求阴影部分的面积和。(单位:厘米)BE6C⑻如图,把△ABC的底边四A等分,那么,甲、乙两个三角形的面积谁大,为什么?甲乙BC3⑶等积法:当两个三角形或平行四边形的底、高分别相等时,它们的面积相等。例:如图,在直角三角形ABC中,D、E分别是AB、AC的中点,如果B△AED的面积是30平方厘米。D求△ABC的面积。解:此题已知的值仅有AEC△AED的面积,一般这种情况下,我们通常要用两个三角形等底等高面积相等的性质来求解。连接BE,因为D是AB中点,所以△AED和△BED面积相等;因为E是AC的中点,所以△ABE和△CBE面积相等。S△BED=S△AED=30(厘米2);S△ABE=S△AED+S△BED=60(厘米2);S△CBE=S△ABE=60(厘米2);S△ABC=S△ABE+S△CBE=120(厘米2)。答。⑷倍比法:当两个三角形或平行四边形的底或高相等,若它们的高或底成倍数关系,则它们的面积也成同样的倍数关系,反之亦然。例:如图,一个矩形被AB分成A、B、C、D四个矩形,已知A的面积是4平CD方厘米,B的面积是8平方厘米,C的面积是14平方厘米。求原来整个矩形的面积是多少?解:通过观察可知,A和B的宽相等,B的面积是A的2倍,所以,B的长必是A的长的2倍;再观察C和D,由上可知D的长也是C的长的2倍,而它们的宽相等,因此,D的面积也是C的面积的2倍。长方形D的面积为:14×(8÷4)=28(厘米2);整个长方形的面积为:4+8+14+28=54(厘米2)。答。⑼如图,在△ABC中,ABE=2EC,AD=BD,D已知△ABC的面积是18平方厘米。求四边BEC形ADEC的面积。⑽一个梯形与一个三角形等高,梯形下底的长是上底的2倍,梯形上底的长又是三角形底长的2倍,这个梯形的面积是三角形面积的多少倍?⑾将△ABC的各条边都延长一倍至A’A’、B’、C’,连接这些点得到一个新的△A’B’C’。若△ABC的A面积为1,求△A’B’C’BC的面积。B’C’⑿在平行四边形ABCD中,ADE、F分别是AB、BC的中E点。如果△BEF的面积是1,则平行四边形ABCD的面BFC积是多少?4⑸置换法:用一个可以求得的面积置换另一个相等或知道相差数的面积。例:如图,正方形ABABCD边长8厘米,△CEF的面积比△ABEE的面积小12平方厘米。△ACF的面积是多少?DCF解:S△ABC=S□ABCD÷2=8×8÷2=32(厘米2)已知S△CEF=S△ABE-12等式两边各加上△ACE的面积,得:S△ACF=S△ABC-12=32-12=20(厘米2)答。⑵逆推法:从要求的数量出发,反向思考,找出解题所必要的条件。例:如图,AD的长AD12厘米,AB长10厘米,△CDE的面积是24平方厘米。求梯形的面积。E解:要求梯形的面积,BFC目前已知梯形的高和上底,只需求出下底的长度,就能计算梯形的面积。由于AD=BF,因此需要计算FC的长度。S△ADC=AD×AB÷2=12×10÷2=60(厘米2);由于S△CDE=24(厘米2),S△ADE=S△ADC-S△CDE=60-24=36(厘米2);DE=S△ADE÷AD×2=6(厘米)FC=S△CDE÷DE×2=8(厘米)梯形的面积:(12+12+8)×10÷2=160(厘米2)答。⒀如图,将图中的四边A’形ABCD的各边都延长一倍至A’B’C’D’,连接ADD’这些点得到一个新的四B’BC边形A’B’C’D’。若四边形ABCD的面积是1,C’求四边形A’B’C’D’的面积。⒁如图,已知正方形ABABCD的边长为8分米,三角形ABF的面F积比三角形CEF的面积大80平方分米。求DCECE的长度。ABC⒂如图,四边形ACEH是梯形,DACEG是平行四E边形,ABGH是HGF正方形,CDFG是长方形。已知AC=6厘米,HE=10厘米。求阴影部分的面积。
本文标题:小学数学几何专题
链接地址:https://www.777doc.com/doc-7055743 .html