您好,欢迎访问三七文档
有理数的运算有理数的加法将一个或多个有理数的值相加的过程叫有理数的加法,如:23+64+52=139分析理解与小学加法的联系有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:一是确定结果的符号;二是求结果的绝对值.法则理解在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,一定要牢记先符号,后绝对值,熟练以后就不会出错了.法则拓广多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算.有理数加法法则Ⅰ.同号两数相加,取相同的符号,并把绝对值相加.Ⅱ.异号两数相加,绝对值相等时,和为零,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值Ⅲ.一个数与0相加,仍得这个数.运算律1、有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为:交换律:a+b=b+a两个数相加,交换加数的位置,和不变。结合律:a+b+c=(a+b)+c=a+(b+c)。2、三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。有理数的加法解析一般地,同号两数相加有下面的法则:同号两数相加,取与加数相同的符号,并把绝对值相加。一般地,异号两数相加有下面的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。另外,有理数相加还有以下法则:互为相反数的两个数相加得零;一个数同零相加,仍得这个数。有理数相加的例子:两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是(+3)+(+1)=+4.(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:一是确定结果的符号;二是求结果的绝对值。在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0。从而确定用那一条法则。在应用过程中,一定要牢记先符号,后绝对值,熟练以后就不会出错了。多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。要点同号相加不变,异号相加变减.欲问符号怎么定,绝对值大号选。在进行有理数加法运算时,一般采取:1.是互为相反数的先加(抵消);2.同号的先加;3.同分母的先加;4.能凑整数的先加;5.异分母分数相加,先通分,再计算.6.几个数相加能得到整数的可以先相加。记忆口诀有理加法不含糊同号异号分清楚如果两数号相同绝对相加号相从如果两数号相异大绝来把小绝去结果符号大绝替有理数减法有理数减法法则减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运算,减数变成它的相反数。一不变:被减数不变。可以表示成:a-b=a+(-b)。表达式:a-b=a+(-b)例题1:计算:1、(-3)-(-5)=2、0-7=3、7.2-(-4.8)=4、0-(-8)=例2:数轴上A、B、C、D所表示的有理数分别是+1、+3、-2、-4,用有理数减法的算式分别表示以下两点间的距离。(1)A、B两点。(2)C、D两点。(3)A、D两点。(4)D、C两点。例3、世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8844米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?解:8844-(-155)=8844+155=8999(米)答:两处高度相差8999米(强调解题格式)练习1.两个有理数相减,是否存在“不够减”的问题呢?差一定小于被减数吗?2.若a与b两数相减,差是负数,则ab。小结有理数乘法有理数乘法法则即两数相乘,同号得正,异号得负,并把绝对值相乘。任何一个数与0相乘,积仍为0。有理数乘法运算律即分配律、结合律、交换律。用字母表示为:ab=ba、a(bc)=(ab)c、a(b+c)=ab+ac。符号法则:两数相乘,同号得正,异号得负特殊运用:任何数与0相乘,积仍为0具体步骤:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。例:(-5)×(-3)=+(5x3)=15(-6)×4=-(6x4)=-24(2)任何数与0相乘,积为0.例:0×1=0(3)几个不等于0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负数;当负因数有偶数个数时,积为正数。并把其绝对值相乘。例:(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数(4)几个数相乘,有一个因数为0时,积为0.例:3×(-2)×0=0(5)乘积为一的两个有理数互为倒数(reciprocal)。例如,—3与—1/3,—3/8与—8/3(5)0没有倒数(6)如果有两个有理数的乘积为1,那么称其中一个数为另一个数的倒数(reciprocal),也称这两个有理数互为倒数。例如:3与3分之一互为倒数,负八分之三与负三分之八互为倒数。[同号得正,异号得负]重点:运用有理数乘法法则正确进行计算。难点:有理数乘法法则的探索过程,符号法则及对法则的理解。1、创设问题情景:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)2、小组探索、归纳法则(1)出示以下问题,学生以组为单位探索。以原点为起点,规定向东的方向为正方向,向西的方向为负方向。a.2×3看作向东运动2米,×3看作向原方向运动3次。结果:向运动米2×3=b.-2×3-2看作向西运动2米,×3看作向原方向运动3次。结果:向运动米-2×3=c.2×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。结果:向运动米2×(-3)=d.(-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。结果:向运动米(-2)×(-3)=e.被乘数是零或乘数是零,结果是人仍在原处。(2)学生归纳法则a.符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得b.积的绝对值等于。c.任何数与零相乘,积仍为。(3)师生共同用文字叙述有理数乘法法则。3、运用法则计算,巩固法则。(1)教师按课本P75例1板书,要求学生述说每一步理由。(2)引导学生观察、分析例1中(3)小题两因数的关系,得出两个有理数互为倒数,它们的积为1。(4)学生做P76练习1的①、③两题,教师评析。(5)教师引导学生做P75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由决定,当负因数个数有,积为;当负因数个数有,积为;只要有一个因数为零,积就为。4、讨论对比,使学生知识系统化。有理数乘法有理数加法同号得正取相同的符号把绝对值相乘(-2)×(-3)=6把绝对值相加(-2)+(-3)=-5异号得负取绝对值大的加数的符号把绝对值相乘(-2)×3=-6(-2)+3=1用较大的绝对值减小的绝对值任何数与零得零得任何数5、分层作业,巩固提高。六、教学反思:本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,效果可能更好。。相关题目计算:1)(-54)×(-0.02)×(-100/21)×(-2)=0.45362)(-4)X(-5)X0.25=20X0.25=53)100X(-3)X(-5)X0.01=(-300)X(-5)X0.01=1500X0.01=154)(1/9-1/6-1/18)X36=(-1/18-1/18)X36=-1/9X36=-45)(1/4-1/2-1/8)X128=(-1/4-1/8)X128=-3/8X128=-48有理数除法法则法则一、除以一个不等于0的数等于乘这个数的倒数。(注意:0没有倒数)公式:a÷b=a×1/b法则二、两数相除,同号得正,异号得负,并把绝对值相除。(0除以任何一个非0的数,都得0)说明:0没有倒数(1)0除以任何一个不等于0的数,都等于0。(2)0在任何条件下都不能做除数。(3)0没有倒数。(4)倒数是它本身的数是1和-1。(5)同号得正,异号得负。(6)除以一个不为0的数等于乘这个数的倒数。运算公式a÷b=a×1/b(b≠0)一般步骤1.两个有理数相除时,首先确定商的符号,其次确定商的绝对值。2.有理数除法运算的步骤:(1)“÷”改为“×”,除数变倒数;(2)乘法运算。有理数乘方求相同因数的积叫做乘方(involution)。乘方运算的结果叫幂(power)。正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。[1]表示22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2与7叫做底数(base),2与3叫做指数(exponent)。这种求n个相同因数a的积运算叫做乘方(power),乘方的结果叫做幂(power),a叫做底数(basenumber),n叫指数(exponent)。任何数的0次方都是1,例:3º=1(注:0º无意义)(2^5=2*2*2*2*2)[2]1、重点:在理解有理数乘方意义的基础上进行有理数的乘方运算。2、难点:与所学知识进行衔接,处理带各种符号的乘方运算。创设情境:①听音频资料,通过《棋盘上的学问》一则故事,引入问题:64个二相乘怎么计算?吸引学生注意,为下文引入乘方的概念铺垫。师:到底国王傻不傻呢?大家先别急着下结论,等大家学完了本节课程,就能回答这个问题了。②请大家看细胞分裂示意图,由计算并用算式表示出第一次,第二次,第三次,第n次分裂后细胞的个数,引入乘方的概念。师:有些时候,我们会遇到几个相同因数相乘的式子,比如五个2相乘,我们要写很长,这样的式子有更简单的表示方式吗?①什么叫乘方?求个相同因数的积的运算叫乘方②用字母怎么表示?读作什么?③每个字母表示什么?分别请学生回答相关的问题,培养学生自主学习的能力。注:①乘方是一种和加减乘除一样的一种运算;②指数n要以小写的形式写于底数的右上角;③了解乘方的意义,从幂转为乘。(3)了解乘方的指数,底数,幂的定义乘方的结果叫做幂;在中,叫做底数,叫做指数。明确
本文标题:有理数的运算技巧
链接地址:https://www.777doc.com/doc-7088472 .html