您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 浙教版九年级上册数学第一章《二次函数》测试卷及答案
浙教版九年级上册数学第一章《二次函数》测试卷考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.下列函数中,是二次函数的是()A.y=8x2+1B.y=8x+1C.xy8D.128xy2.已知点(﹣2,4)在抛物线y=ax2上,则a的值是()A.﹣1B.1C.±1D.813.二次函数y=(a﹣1)x2(a为常数)的图象如图所示,则a的取值范围为()A.a>1B.a<1C.a>0D.a<0(第3题)(第6题)(第9题)(第10题)4.将抛物线y=-3x2先向右平移4个单位,再向下平移5个单位,所得图象的解析式为()A.y=-3(x-4)2-5B.y=-3(x+4)2+5C.y=-3(x-4)2+5D.y=-3(x+4)2-55.抛物线y=x2+2x﹣3的最小值是()A.3B.﹣3C.4D.﹣46.如图,二次函数y=ax2+bx+c图象的对称轴是直线x=1,与x轴一个交点A(3,0),则与x轴的另一个交点坐标是()A.(0,21)B.(21,0)C.(0,﹣1)D.(﹣1,0)7.将化成的形式,则的值是()A.-5B.-8C.-11D.58.已知抛物线经过和两点,则n的值为()A.﹣2B.﹣4C.2D.49.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是()A.①④B.①②C.②③④D.②③10.已知反比例函数y=的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.11.在平面直角坐标系中,对于二次函数,下列说法中错误的是()A.的最小值为1B.图象顶点坐标为(2,1),对称轴为直线C.当时,的值随值的增大而增大,当时,的值随值的增大而减小D.它的图象可以由的图象向右平移2个单位长度,再向上平移1个单位长度得到12.已知,抛物线y=ax2+bx+c的部分图象如图,则下列说法:①对称轴是直线x=1;②当﹣1<x<3时,y<0;③a+b+c=﹣4;④方程ax2+bx+c+5=0无实数根.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.若是关于自变量x的二次函数,则________.14.二次函数y=x2+2x-3与x轴两交点之间的距离为________.15.抛物线y=21x2+4x+3的顶点坐标是________16.矩形的周长等于40,则此矩形面积的最大值是________.17.若二次函数的对称轴为直线,则关于的方程的解为________.18.如图,在平面直角坐标系中,抛物线y=1)3(412x的顶点为A,直线l过点P(0,m)且平行于x轴,与抛物线交于点B和点C.若AB=AC,∠BAC=90°,则m=________.三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.19.(8分)已知二次函数y=x2+3x+m的图象与x轴交于点A(﹣4,0).(1)求m的值;(2)求该函数图象与坐标轴其余交点的坐标.20.(8分)如图,二次函数图象过A,B,C三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式.21.(10分)已知抛物线y=x2+bx+c的图象如图所示,它与x轴的一个交点的坐标为A(﹣1,0),与y轴的交点坐标为C(0,﹣3).(1)求抛物线的解析式及与x轴的另一个交点B的坐标;(2)根据图象回答:当x取何值时,y<0?(3)在抛物线的对称轴上有一动点P,求PA+PB的值最小时的点P的坐标.22.(10分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=-时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.23.(10分)在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-m+2的顶点为D.线段AB的两个端点分别为A(-3,m),B(1,m).(1)求点D的坐标(用含m的代数式表示);(2)若该抛物线经过点B(1,m),求m的值;(3)若线段AB与该抛物线只有一个公共点,结合函数的图象,求m的取值范围.24.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.(10分)如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.参考答案一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.A2.B3.B4.A5.D6.D7.A8.B9.D10.C11.C12.D二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.214.415.(-4,-5)16.10017.,18.3三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.19.解(1)将A点坐标(﹣4,0)代入y=x2+3x+m得:16﹣12+m=0,解得:m=﹣4;(2)当x=0时,则:y=﹣4,∴函数图象与y轴的交点为(0,﹣4).令y=0,则x2+3x﹣4=0,解得:x1=1,x2=﹣4,∴函数图象与x轴的另一个交点为(1,0).20.解(1)解:∵点A的坐标为(﹣1,0),点B的坐标为(4,0),∴AB=1+4=5,∵AB=OC,∴OC=5,∴C点的坐标为(0,5)(2)解:设过A、B、C点的二次函数的解析式为y=ax2+bx+c,把A、B、C的坐标代入得:,解得:a=﹣,b=,c=5,所以二次函数的解析式为y=﹣x2+x+521.(1)解:由二次函数y=x2+bx+c的图象经过(﹣1,0)和(0,﹣3)两点,得,解得.则抛物线的解析式为y=x2﹣2x﹣3;∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣3)(x+1),则该抛物线与x轴的交点坐标是:A(﹣1,0),B(3,0);(2)根据图象知,当﹣1<x<3时,y<0;(3)∵A(﹣1,0),B(3,0),∴对称轴是直线x=1.当A、B、P三点共线时,PA+PB的值最小,此时点P是对称轴与x轴的交点,即P(1,0).22.(1)解:①当a=-时,y=-(x-4)2+h,将点P(0,1)代入,得:-×16+h=1,解得:h=;②把x=5代入y=-(x-4)2+,得:y=-×(5-4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x-4)2+h,得:,解得:,∴a=-.23.解:(1)∵y=x2-2mx+m2-m+2=(x-m)2-m+2,∴D点的坐标为(m,-m+2).(2)∵抛物线经过点B(1,m),∴m=1-2m+m2-m+2,解得m=3或m=1.(3)根据题意,∵A点的坐标为(-3,m),B点的坐标为(1,m),∴线段AB为y=m(-3≤x≤1),与y=x2-2mx+m2-m+2联立得x2-2mx+m2-2m+2=0,令y'=x2-2mx+m2-2m+2,若抛物线y=x2-2mx+m2-m+2与线段AB只有1个公共点,即函数y'在-3≤x≤1范围内只有一个零点,当x=-3时,y'=m2+4m+110,∵Δ0,∴此种情况不存在,当x=1时,y'=m2-4m+3≤0,解得1≤m≤3.24.(1)解:由题意得:.故y与x之间的函数关系式为:y=-10x+700.(2)解:由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元(3)解:w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.25.解(1)设抛物线的函数表达式为y=ax(x-10)∵当t=2时,AD=4∴点D的坐标是(2,4)∴4=a×2×(2-10),解得a=∴抛物线的函数表达式为(2)由抛物线的对称性得BE=OA=t∴AB=10-2t当x=t时,AD=∴矩形ABCD的周长=2(AB+AD)=∵0∴当t=1时,矩形ABCD的周长有最大值,最大值是多少.(3)如图,当t=2时,点A,B,C,D的坐标分别为(2,0),(8,0),(8,4),(2,4)∴矩形ABCD对角线的交点P的坐标为(5,2)当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分。当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分。∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分。当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积。∵AB∥CD∴线段OD平移后得到线段GH∴线段OD的中点Q平移后的对应点是P在△OBD中,PQ是中位线∴PQ=OB=4所以,抛物线向右平移的距离是4个单位。
本文标题:浙教版九年级上册数学第一章《二次函数》测试卷及答案
链接地址:https://www.777doc.com/doc-7096351 .html