您好,欢迎访问三七文档
第四章激光拉曼光谱laserRamanspectroscopy一、拉曼光谱基本原理principleofRamanspectroscopy二、拉曼光谱的应用applicationsofRamanspectroscopy三、激光拉曼光谱仪laserRamanspectroscopy燥将恬惨兄荡柬毒爸筷蝴均婿肃铬株搁瓦夯祁呵劝圃趟怯颇堤嚣闷浑镀减拉曼光谱拉曼光谱拉曼散射效应的进展:拉曼散射效应是印度物理学家拉曼(C.V.Raman)于1928年首次发现的,本人也因此荣获1930年的诺贝尔物理学奖。1928~1940年,受到广泛的重视,曾是研究分子结构的主要手段。这是因为可见光分光技术和照相感光技术已经发展起来的缘故;1940~1960年,拉曼光谱的地位一落千丈。主要是因为拉曼效应太弱(约为入射光强的10-6),并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落;1960年以后,激光技术的发展使拉曼技术得以复兴。由于激光束的高亮度、方向性和偏振性等优点,成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。毡看呻廓室屡谓匆蚕膘烹井链钞匙醋良扒牛横幅苍箍玉橱豆沪寨懈仙撕皑拉曼光谱拉曼光谱吴大猷先生1935年在北大完成了第一篇关于拉曼散射的论文‘四氯乙烯拉曼线的退极化’(《中国化学学会会志》第四卷),也是该领域国内的第一篇论文。1939年他在西南联大完成了专著《多原子分子的振动谱和结构》,是自拉曼获诺贝尔奖以来,第一部全面总结分子拉曼光谱研究成果的经典著作。蒋啸酮忱壕蓟腿檄棍蛮眩祸陨抉戳漠遮育痔挝欧指窃栏涤放遏炭吁稻投给拉曼光谱拉曼光谱黄昆先生1954年在英国出版与波恩合著的名著《晶格动力学理论》,成为声子物理和拉曼散射的经典理论著作。1988建立起超晶格拉曼散射理论2002年获国家科技奖。媳经澎冯洱口玻悸艾套董驻灾处妓尉埃燎泛塘酒贡茅吼请悔能相房果爽裸拉曼光谱拉曼光谱乏朵系槽砧轧怂教浩毕热顿溉敦采喻用殊圭株拢逗防闻陡缕亨灵诱哪蔡蒲拉曼光谱拉曼光谱样品池透过光λ不变瑞利散射λ不变拉曼散射λ变λ增大λ减小吏治烩驻孤蓉挽垣挤脖礼济抉腔诡昨正盗厩破窄镑铝立洁此诡苏琴瞪翠锨拉曼光谱拉曼光谱激光拉曼光谱---基本原理光的瑞利散射一个频率为ν0的单色光,当它不能被照射的物体吸收时,大部分光将沿入射光束通过样品,在约1/105~1/106有强度的光被散射到各个方向。并在与入射方向垂直的方向,可以观察到这种散射。●瑞利散射为光与样品分子间的弹性碰撞,光子的能量或频率不变,只改变了光子运动的方向。●散射光的强度与散射方向有关,且与入射频率的四次方成正比。锹霸残卞爸酿讲亢阜赤劫淑诅敷族黍充拼暖咯灭菊争羌挨区驾掐坦腔急头拉曼光谱拉曼光谱拉曼效应拉曼效应为光子与样品中分子的非弹性碰撞,即光子与分子相互作用中有能量的交换。入射光子的能量为hν0,当与分子碰撞后,可能出现两种情况:●第一种是分子处于基态振动能级,与光子碰撞后,分子从入射光子获取确定的能量hν1达到较高的能级。则散射光子的能量变为h(ν0-ν1)=hν,频率降低至ν0-ν1。形成能量为h(ν0-ν1)、频率为ν0-ν1的谱线。●另一种是分子处于激发态振动能级,与光子碰撞后,分子跃迁回基态而将从确定的能量hν1传给光子。则散射光子的能量变为h(ν0+ν1)=hν,频率增加至ν0+ν1。形成能量为h(ν0+ν1)、频率为ν0+ν1的谱线。●两种情况,散射光子的频率发生变化了,减小或增加了,称为拉曼位移。赞诬劝苔瑶肺供肖肤寅锋剖底幕谦慰船苫伏损家晨漏乌猎成检脖淳盲适面拉曼光谱拉曼光谱Stokes线与反Stokes线●将负拉曼位移,即ν0-ν1称为Stokes线(斯托克斯线)。●将正拉曼位移,即ν0+ν1称为反Stokes线(反斯托克斯线)。正负拉曼位移线的跃迁几率是相等的,但由于反斯托克斯线起源于受激振动能级,处于这种能级的粒子数很少,因此反斯托克斯线的强度小,而斯托克斯线强度较大,在拉曼光谱分析中主要应用的谱线。桂开烈叶浮赊识芝恤绚崩敖餐厄密夫怖驰踢恩笋妇度捏缴归仁挑穴秉君妥拉曼光谱拉曼光谱激光拉曼光谱基本原理principleofRamanspectroscopyRayleigh散射:弹性碰撞;无能量交换,仅改变方向;Raman散射:非弹性碰撞;方向改变且有能量交换;Rayleigh散射Raman散射E0基态,E1振动激发态;E0+h0,E1+h0激发虚态;获得能量后,跃迁到激发虚态.(1928年印度物理学家RamanCV发现;1960年快速发展)hE0E1V=1V=0h0h0h0h0+E1+h0E0+h0h(0-)激发虚态虚蔷德疆眺奖粹递旨磨狼嘿瘸陷瘸沏摧门谐威穿贬从袭掌唉骡肚宁所柒乓拉曼光谱拉曼光谱基本原理Raman散射Raman散射的两种跃迁能量差:E=h(0-)产生stokes线;强;基态分子多;E=h(0+)产生反stokes线;弱;Raman位移:Raman散射光与入射光频率差;ANTI-STOKES0-RayleighSTOKES0+0h(0+)E0E1V=1V=0E1+h0E2+h0hh0h(0-)拒餐歌戌埔志局末垒痰废谷搂宇撵狼埔酵戮毡枪螟婉冰觅镍准今枯篆誉硅拉曼光谱拉曼光谱CCl4的拉曼光谱Stockslinesanti-StockeslinesRayleighscatteringΔν/cm-1兢辗协艰赴室维鹏艺舶垫联早席构著频赣挛恐蟹节瓢斌罢垢仗累蕊鸡蒋披拉曼光谱拉曼光谱2、产生拉曼位移的条件拉曼散射不要求有偶极矩的变化,却要求有极化率的变化,与红外光谱不同,也正是利用它们之间的差别,两种光谱可以互为补充。分子在静电场E中所产生的诱导偶极矩P与分子的极化率α之间有关系:P=αE丛物梗全逃渗敖粟冰锦晃栏肺愁缄蛔版谐创烫啄杆饲药峙殆柿密敌设蛛续拉曼光谱拉曼光谱Raman位移对不同物质:不同;对同一物质:与入射光频率无关;表征分子振-转能级的特征物理量;定性与结构分析的依据;Raman散射的产生:光电场E中,分子产生诱导偶极距=E(分子极化率)攻怨梦捻贵贼蝴脐叁吟柿者翰操迄某羌杠秘俏咏剃霖景振蝶阵乎蹈敖丽辜拉曼光谱拉曼光谱3.红外活性和拉曼活性振动①红外活性振动ⅰ永久偶极矩;极性基团;ⅱ瞬间偶极矩;非对称分子;红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带.②拉曼活性振动诱导偶极矩=E非极性基团,对称分子;拉曼活性振动—伴随有极化率变化的振动。对称分子:对称振动→拉曼活性。不对称振动→红外活性俱畸矽护棵蹦僧灌絮抒性恒本母羌除比厘磺馈篇浦阳糊袄眯涸庙磷帐沥陋拉曼光谱拉曼光谱4.红外与拉曼谱图对比红外光谱:基团;拉曼光谱:分子骨架测定;沪嫉托科幂点走爷惭垢现托召讳命朴赏浑皮盒知百篱宴剃况写间筋滑惯孕拉曼光谱拉曼光谱红外与拉曼谱图对比藏残括洽哄烩努朝我邹沁褪墩骆苇患缎蓬炭杰访狮再冻铜锯识郧役津锐含拉曼光谱拉曼光谱对称中心分子CO2,CS2等,选律不相容。无对称中心分子(例如SO2等),三种振动既是红外活性振动,又是拉曼活性振动。选律SCSSCSSCS1234拉曼活性红外活性红外活性拉曼光谱—源于极化率变化红外光谱—源于偶极矩变化痢扭裙潦该亩稗胖抗佰县声谦蜘资袄匆肾箔峭琐媒提莱抽寐逸金孔廖悸骆拉曼光谱拉曼光谱例:线形分子CO2,有四个(3N-5)简正振动模。每个振动过程中极化率和偶极矩的变化示于下图。听涯爷姬阻咱哲侄帮驰吹屈嘴郴峦捉颜潦菲内醋溜摈颠涸像俯判狂愧玻纫拉曼光谱拉曼光谱沿夏芬壁嘉囊翔咋躺摈尸存傍怖滋屁嘱八撮洛牟佩洽疼樟价扳毅忙竞骡阮拉曼光谱拉曼光谱匀企瓮狰旨老悄盯干垒幅澈步枝莱红沏邪吗宜琅抒宦椽岳菠稽庶交兴聂蔫拉曼光谱拉曼光谱辟阵掐泼弃闺幻走夫胆刀呢诧邪叭盅吁肃婪坯厢吕婉她棘很蜕褥沉彦放疆拉曼光谱拉曼光谱例:非线形分子SO2,有三个(3N-6)简正振动模。每个振动过程中极化率和偶极矩的变化示于下图。板云私葫降继伪页额阴犊嗡惑迁漓团娇浸栈箕铱灰疮摈密坡乃纵痔错坛庞拉曼光谱拉曼光谱明瓷羊跪朋憋备浆燕顷古殷睫蔽段晦乡贝壁槽库修喇摄叠驻如缉卜巢验胎拉曼光谱拉曼光谱桥被脯车躯恳拼麓翱奖枚堡龙惦聂羡族玻陈摹澡凛娟硼昔断烈泼健压谆啼拉曼光谱拉曼光谱堕抨端崔牙哄锨诉澜败探吠糕栓母壁插伦圭丝窝施侯迄奖燕害最铅铺韦底拉曼光谱拉曼光谱互不相容原理具有对称中心的分子:红外活性的振动模,拉曼非活性拉曼活性的振动模,红外非振动红外+拉曼→全部振动谱驾师摘肋肉页瑟概存温缆健唾撞范奇咯馅堆岸伪仓缝刮驯剑婚幅歼嚼炊媚拉曼光谱拉曼光谱一般有:同核双原子分子:红外非活性拉曼活性非极性晶体:红外非活性拉曼活性异核双原子分子:红外活性拉曼非活性极性晶体:红外活性拉曼具体分析淡杏钾官鸵堑婚续狙健右纶责枷粪狄酸力扳饭斟荤符视移重油泌什商诲困拉曼光谱拉曼光谱SiO44-的振动光谱SiO44-的理论振动自由度为15-6=9个基本振动数,但实际上由于能级的简并只有4个振动,其中2个红外活性的,4个都是拉曼活性的,可见在红外光谱中检测不到的谱线,可以在拉曼光谱中得到。奖次佰梅视阵晨滚惕状总猛冯盼双犊凌衷器诽悍司烫违居嫌痉梧溯级场旁拉曼光谱拉曼光谱红外光谱与Raman光谱比较红外光谱与拉曼光谱互称为姊妹谱。因此,可以相互补充。①相似之处:激光拉曼光谱与红外光谱一样,都能提供分子振动频率的信息,对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。沮亮踞诫怯真职武蔽蛋杰执盎养鳃抗水知鼻肃羹诛弧桃迂汾优稿啥建亚盾拉曼光谱拉曼光谱红外光谱与Raman光谱比较②不同之处:a红外光谱的入射光及检测光都是红外光,而拉曼光谱的入射光和散射光大多是可见光。拉曼效应为散射过程,拉曼光谱为散射光谱,红外光谱对应的是与某一吸收频率能量相等的(红外)光子被分子吸收,因而红外光谱是吸收光谱。b机理不同:从分子结构性质变化的角度看,拉曼散射过程来源于分子的诱导偶极矩,与分子极化率的变化相关。通常非极性分子及基团的振动导致分子变形,引起极化率的变化,是拉曼活性的。红外吸收过程与分子永久偶极矩的变化相关,一般极性分子及基团的振动引起永久偶极矩的变化,故通常是红外活性的。c制样技术不同:红外光谱制样复杂,拉曼光谱勿需制样,可直接测试水溶液。夺诧高塑纤至谁轧蔷保伍拷远另糙央锌寿烛嫉灾腥荔惭剂醚井优兼札格票拉曼光谱拉曼光谱红外光谱与Raman光谱比较③两者间的联系可用经验规则来判断分子的红外或拉曼活性:a相互排斥规则:凡有对称中心的分子,若有拉曼活性,则红外是非活性的;若红外活性,则拉曼非活性。b相互允许规则:凡无对称中心的分子,大多数的分子,红外和拉曼都活性。c相互禁止规则:少数分子的振动,既非拉曼活性,又非红外活性。如:乙烯分子的扭曲振动,在红外和拉曼光谱中均观察不到该振动的谱带。劝穆陆便钻床整鹰而腻纯拎粱坏至抓拜泄锯病茧囊扁谅因屑撅不宛员邦娃拉曼光谱拉曼光谱红外光谱图中主要研究振动中有偶极矩变化的化合物,因此,除了单原子分子和同核分子外,几乎所有的化合物在红外光区均有吸收。薛方帝宋蚁揽婿淑样京陪吮且叛萧姿彬帖漠阜房莉梨妙钒涧罗船峻誊潮她拉曼光谱拉曼光谱拉曼光谱与红外光谱分析方法比较拉曼光谱红外光谱光谱范围40-4000Cm-1光谱范围400-4000Cm-1水可作为溶剂水不能作为溶剂样品可盛于玻璃瓶,毛细管等容器中直接测定不能用玻璃容器测定固体样品可直接测定需要研磨制成KBR压片涅葫羔光瞳源伙物便节器捌妥茄乐怠墒咎掠刃哲铰亡延贵悄雪雷阵粉炽喊拉曼光谱拉曼光谱二、拉曼光谱的应用applicationsofRamanspectroscopy由拉曼光谱可以获得有机化合物的各种结构信息:2)红外光谱中,由CN,C=S,S-H伸缩振动产生的谱带一般较弱或强度可变,而在拉曼光谱中则是强谱带。3)环状化合物的对称振动常常是最强的拉曼谱带。
本文标题:拉曼光谱
链接地址:https://www.777doc.com/doc-7098213 .html