您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 灰色预测模型--ppt课件
灰色预测模型马文丽201620154灰色预测模型2一灰色预测的概念;二灰色生成数列;四灰色预测计算实例。三灰色模型GM;一、灰色预测的概念(1)灰色系统、白色系统和黑色系统•白色系统是指一个系统的内部特征是完全已知的,即系统的信息是完全充分的。•黑色系统是指一个系统的内部信息对外界来说是一无所知的,只能通过它与外界的联系来加以观测研究。•灰色系统内的一部分信息是已知的,另一部分信息是未知的,系统内各因素间有不确定的关系。•灰色预测法是一种对含有不确定因素的系统进行预测的方法。•灰色预测是对既含有已知信息又含有不确定信息的系统进行预则,就是对在一定范围内变化的、与时间有关的灰色过程进行预测。(2)灰色预测法一、灰色预测的概念•灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。•灰色预测法用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。一、灰色预测的概念(3)灰色预测的四种常见类型•数列预测对某现象随时间的顺延而发生的变化所做的预测定义为数列预测。例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平,另一个是这一水平所发生的时间。•灾变预测对灾害或异常突变可能发生的时间预测称为灾变预测。例如对地震时间的预测。一、灰色预测的概念•系统预测对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。例如市场中替代商品、相互关联商品销售量互相制约的预测。•拓扑预测将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。一、灰色预测的概念二、灰色生成数列灰色系统理论认为,尽管客观表象复杂,但总是有整体功能的,因此必然蕴含某种内在规律。关键在于如何选择适当的方式去挖掘和利用它。灰色系统是通过对原始数据的整理来寻求其变化规律的,这是一种就数据寻求数据的现实规律的途径,即为灰色序列的生成。一切灰色序列都能通过某种生成弱化其随机性,显现其规律性。数据生成的常用方式有累加生成、累减生成和加权累加生成。(1)累加生成把数列各项(时刻)数据依次累加的过程称为累加生成过程(AGO)。由累加生成过程所得的数列称为累加生成数列。设原始数列为令称所得到的新数列为数列的1次累加生成数列。类似地有称为的r次累加生成数列。))(,),2(),1(()0()0()0()0(nxxxx,,,2,1,)()(1)0()1(nkixkxki))(,),2(),1(()1()1()1()1(nxxxx)0(x1,,,2,1,)()(1)1()(rnkixkxkirr)0(x累加生成计算示例例:x(0)=(x(0)(k)︱k=1,2,3,4,5)=x(0)(1),x(0)(2),x(0)(3),x(0)(4),x(0)(5)=(3.2,3.3,3.4,3.6,3.8)求x(1)(k)解:21)0()0()0()1()0()1(5.63.32.3)2()1()()2(,22.3)1()1(,1ixxixxkxxk51)0()1()0()1()0()1(41)0()1()0()1(31)0()1(3.178.35.13)5()4()()5(,55.136.39.9)4()3()()4(,49.94.35.6)3()2()()3(,3iiixxixxkxxixxkxxixxk累加生成的特点一般经济数列都是非负数列。累加生成能使任意非负数列、摆动的与非摆动的,转化为非减的、递增的。原始数列作图1—AGO作图某市的汽车销售量递增的规律原始数列作图1—AGO作图有明显的指数关系的规律某钢厂产量某地区作物产量s型变化规律(2)累减生成对于原始数据列依次做前后相邻的两个数据相减的运算过程称为累减生成过程IAGO。如果原始数据列为令称所得到的数列为的1次累减生成数列。注:从这里的记号也可以看到,从原始数列,得到新数列,再通过累减生成可以还原出原始数列。实际运用中在数列的基础上预测出,通过累减生成得到预测数列。))(,),2(),1(()1()1()1()1(nxxxx,,,3,2),1()()()1()1()0(nkkxkxkx)0(x)1(x)0(x)1(x)1(x)1(ˆx)0(ˆx1),1()())(()()()()11,11,10,5,4,5(IGAO11)5()6()6(,611)4()5()5(,510)3()4()4(,45)2()3()3(,34)1()2()2(,25)1()0()1()1(,10)0(,0)1()()()46,35,24,14,9,5())6(),5(),4(),3(),2(),1((10)0()1()1()0()1()1()0()1()1()0()1()1()0()1()1()0()1()1()1()0()1()1()1()0()1()1()1()1()1()1()1(limtkxkxkxttkxkxdtkdxxxxxkxxxkxxxkxxxkxxxkxxxxkxkkxkxkxxxxxxxxt相当于而有求导性质,这是因为不难看出,累减生成具)(从而有:若解:)(累减生成计算示例(3)加权邻值生成设原始数列为称为数列的邻值。为后邻值,为前邻值,对于常数,令由此得到的数列称为数列在权下的邻值生成数,权也称为生成系数。特别地,当生成系数时,则称为均值生成数,也称等权邻值生成数。))(,),2(),1(()0()0()0()0(nxxxx)(),1()0()0(kxkx)0(x)1()0(kx)()0(kx]1,0[,,,3,2),1()1()()()0()0()0(nkkxkxkz)0(z)0(x5.0,,,3,2),1(5.0)(5.0)()0()0()0(nkkxkxkz灰色系统理论是基于关联空间、光滑离散函数等概念定义灰导数与灰微分方程,进而用离散数据列建立微分方程形式的动态模型,即灰色模型是利用离散随机数经过生成变为随机性被显著削弱而且较有规律的生成数,建立起的微分方程形式的模型,这样便于对其变化过程进行研究和描述。G表示grey(灰色),M表示model(模型)灰色模型GM(1,1)设为原始数列,其1次累加生成数列为,其中定义的灰导数为令为数列的邻值生成数列,即于是定义GM(1,1)的灰微分方程模型为))(,),2(),1(()0()0()0()0(nxxxx))(,),2(),1(()1()1()1()1(nxxxx,,,2,1,)()(1)0()1(nkixkxki)1(x).1()()()()1()1()0(kxkxkxkd)1(z)1(x),1()1()()()1()1()1(kxkxkz,)()()1(bkazkd即或(1)在式(1)中,称为灰导数,a称为发展系数,称为白化背景值,b称为灰作用量。将时刻表代入(1)式有引入矩阵向量记号:于是GM(1,1)模型可表示为,)()()1()0(bkazkx)()0(kx)()1(kznk,,3,2,)()(,)3()3(,)2()2()1()0()1()0()1()0(bnaznxbazxbazx)()3()2()0()0()0(nxxxYbau1)(1)3(1)2()1()1()1(nzzzB.uYB现在问题归结为求a,b在值。用一元线性回归,即最小二乘法求它们的估计值为注:实际上回归分析中求估计值是用软件计算的,有标准程序求解,如matlab等。.)(ˆˆˆ1YBBBbauTTGM(1,1)的白化型对于GM(1,1)的灰微分方程(1),如果将灰导数的时刻视为连续变量t,则视为时间t函数,于是对应于导数白化背景值对应于。于是GM(1,1)的灰微分方程对应于的白微分方程为(2)称之为GM(1,1)的白化型。)()0(kxnk,,3,2)()1(tx)()0(kxdttdx)()1()()1(kz)t(x)1(,)()()1()1(btaxdttdx三、GM(1,1)灰色预测的步骤1.数据的检验与处理为了保证GM(1,1)建模方法的可行性,需要对已知数据做必要的检验处理。设原始数据列为了,计算数列的级比如果所有的级比都落在可容覆盖区间内,则数据列可以建立GM(1,1)模型且可以进行灰色预测。否则,对数据做适当的变换处理,如平移变换:取C使得数据列的级比都落在可容覆盖内。))(,),2(),1(()0()0()0()0(nxxxx.,,3,2,)()1()()0()0(nkkxkxk),(1212nneeX)0(x,,,2,1,)()()0()0(nkckxky2.建立GM(1,1)模型不妨设满足上面的要求,以它为数据列建立GM(1,1)模型用回归分析求得a,b的估计值,于是相应的白化模型为解为(3)于是得到预测值从而相应地得到预测值:))(,),2(),1(()0()0()0()0(nxxxx,)()()1()0(bkazkx,)()()1()1(btaxdttdx.))1(()()1()0()1(abeabxtxta,1,,2,1,))1(()1(ˆ)0()1(nkabeabxkxak,1,,2,1),(ˆ)1(ˆ)1(ˆ)1()1()0(nkkxkxkx3.检验预测值(1)残差检验:计算相对残差如果对所有的,则认为达到较高的要求:否则,若对所有的,则认为达到一般要求。(2)级比偏差值检验:计算如果对所有的,则认为达到较高的要求;否则若对所有的,则认为达到一般要求。,,,2,1,)()(ˆ)()()0()0()0(nkkxkxkxk1.0|)(|k2.0|)(|k),(5.015.011)(kaak1.0|)(|k2.0|)(|k四、灰色预测计算实例例北方某城市1986~1992年道路交通噪声平均声级数据见表6表6市近年来交通噪声数据[dB(A)]序号年份eqL1198671.12198772.43198872.44198972.15199071.46199172.07199271.6第一步:级比检验建立交通噪声平均声级数据时间序列如下:(0)(0)(0)(0)(1),(2),(7))xxxx(=(71.1,72.4,72.4,72.1,71.4,72.0,71.6)(1)求级比λ(k)(0)(0)(1))()xkkxk(=(0.982,1,1.0042,1.0098,0.9917,1.0056)(2)级比判断由于所有的λ(k)∈[0.982,1.0098],k=2,3,…,7,故可以用x(0)作满意的GM(1,1)建模。第二步:GM(1,1)建模(1)对原始数据作一次累加,即=(71.1,143.5,215.9,288,359.4,431.4,503)(2)构造数据矩阵B及数据向量Y((2),(3),,(7))(0)x(1)x(1)(1)(0)(1)(1)(0)(0)(1)(1)1(1+2111(+,211(+2xxxxxxBYxxx()(2))(2)(2)(3))(3)(7)(6)(7))10.0023ˆˆˆ(,)()()72.6573TTTuabBBBY(3)计算uˆ于是得到a=0.0023
本文标题:灰色预测模型--ppt课件
链接地址:https://www.777doc.com/doc-7098499 .html