您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 二次函数图像与系数关系(含答案)
1二次函数图像与系数关系一.选择题(共9小题)1.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③考点:二次函数图象与系数的关系.4946047专题:计算题;压轴题.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.2.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④考点:二次函数图象与系数的关系.4946047专题:压轴题.分析:根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大即可判断④.解答:解:∵二次函数的图象的开口向上,∴a>0,∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0,∵二次函数图象的对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,∴①正确;2a﹣b=2a﹣2a=0,∴②正确;∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).∴与x轴的另一个交点的坐标是(1,0),∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大,∵<3,∴y2<y1,∴④正确;故选C.点评:本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.3.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个考点:二次函数图象与系数的关系.4946047专题:压轴题.分析:由抛物线的对称轴在y轴右侧,可以判定a、b异号,由此确定①正确;由抛物线与x轴有两个交点得到b2﹣4ac>0,又抛物线过点(0,1),得出c=1,由此判定②正确;由抛物线过点(﹣1,0),得出a﹣b+c=0,即a=b﹣1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定④正确;由a﹣b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c<a+1+1<2,由此判定③正确;由图象可知,当自变量x的取值范围在一元二次方程ax2+bx+c=0的两个根之间时,函数值y>0,由此判定⑤错误.解答:解:∵二次函数y=ax2+bx+c(a≠0)过点(0,1)和(﹣1,0),∴c=1,a﹣b+c=0.①∵抛物线的对称轴在y轴右侧,∴x=﹣>0,∴a与b异号,∴ab<0,正确;②∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,∵c=1,∴b2﹣4a>0,b2>4a,正确;④∵抛物线开口向下,∴a<0,∵ab<0,∴b>0.∵a﹣b+c=0,c=1,∴a=b﹣1,∵a<0,∴b﹣1<0,b<1,∴0<b<1,正确;③∵a﹣b+c=0,∴a+c=b,∴a+b+c=2b>0.∵b<1,c=1,a<0,∴a+b+c=a+b+1<a+1+1=a+2<0+2=2,∴0<a+b+c<2,正确;⑤抛物线y=ax2+bx+c与x轴的一个交点为(﹣1,0),设另一个交点为(x0,0),则x0>0,由图可知,当x0>x>﹣1时,y>0,错误;综上所述,正确的结论有①②③④.故选B.点评:本题主要考查二次函数图象与系数之间的关系,不等式的性质,难度适中.二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号,此外还要注意二次函数与方程之间的转换.4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中,正确的是()A.abc<0B.a+c<bC.b>2aD.4a>2b﹣c考点:二次函数图象与系数的关系;二次函数与不等式(组).4946047专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及图象经过的点的情况进行推理,进而对所得结论进行判断.解答:解:A、∵图象开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,∵对称轴在y轴左侧,﹣<0,∴b<0,∴abc>0,故本选项错误;B、∵当x=﹣1时,对应的函数值y>0,即a﹣b+c>0,∴a+c>b,故本选项错误;C、∵抛物线的对称轴为直线x=﹣>﹣1,又a<0,∴b>2a,故本选项正确;D、∵当x=﹣2时,对应的函数值y<0,即4a﹣2b+c<0,∴4a<2b﹣c,故本选项错误.故选C.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与不等式的关系,难度中等.5.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个考点:二次函数图象与系数的关系.4946047专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①如图,∵抛物线开口方向向下,∴a<0.∵对称轴x=﹣=﹣,∴b=a<0,∴ab>0.故①正确;②如图,当x=1时,y<0,即a+b+c<0.故②正确;③如图,当x=﹣1时,y=a﹣b+c>0,∴2a﹣2b+2c>0,即3b﹣2b+2c>0,∴b+2c>0.故③正确;④如图,当x=﹣时,y>0,即a﹣b+c>0.∴a﹣2b+4c>0,故④正确;⑤如图,对称轴x=﹣=﹣,则.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.6.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.4946047专题:压轴题.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.7.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个考点:二次函数图象与系数的关系.4946047专题:压轴题.分析:首先根据二次函数图象开口方向可得a>0,根据图象与y轴交点可得c<0,再根据二次函数的对称轴x=﹣,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出①的正误;根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出②的正误;利用a﹣b+c=0,求出a﹣2b+4c<0,再利用当x=4时,y>0,则16a+4b+c>0,由①知,b=﹣2a,得出8a+c>0.解答:解:根据图象可得:a>0,c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④正确;故正确为:③④两个.故选:B.点评:此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).8.已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b≠m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1,其中正确的是()A.2个B.3个C.4个D.1个考点:二次函数图象与系数的关系.4946047分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=﹣>0,∴a、b异号,即b<0,又∵c<0,∴abc>0,故本选项正确;②∵对称轴为x=﹣>0,a>0,﹣<1,∴﹣b<2a,∴2a+b>0;故本选项错误;③当x=1时,y1=a+b+c;当x=m时,y2=m(am+b)+c,当m>1,y2>y1;当m<1,y2<y1,所以不能确定;故本选项错误;④当x=1时,a+b+c
本文标题:二次函数图像与系数关系(含答案)
链接地址:https://www.777doc.com/doc-7100669 .html