您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文化 > 脑成像数据的元分析-ALE原理与操作
脑成像的元分析研究:基于坐标点的元分析方法报告人:封春亮单位:北京师范大学,脑与认知科学研究院脑成像元分析的背景简介脑成像数据元分析的发展元分析(Glass,1976)“将现有研究整合并对其结果进行综合分析的统计方法”脑成像数据元分析的发展(胡传鹏等,2015)脑成像研究的数量脑成像数据元分析的发展元分析对脑成像研究的意义(Wageretal.,2007;Eickhoffetal.,2009)单个脑成像研究的被试数量普遍较少,结果不够稳定;单个脑成像的结果很可能受到特定的实验操作(如,扫描参数)的影响;单个脑成像研究对某个脑区功能的解释往往局限于使用的单个或几个任务。(e.g.,vmPFC=self-reflection?)---单个脑成像研究的局限性(Wageretal.,2007)脑成像数据元分析的发展脑成像技术:where?(位置信息)坐标信息(x,y,z)最大激活点的坐标(x,y,z)脑成像数据元分析的发展脑成像的元分析:对不同研究中位置信息的整合早期脑成像数据的“元分析”:对不同研究中报告的位置信息的主观描绘(Peyron,2000)(Joseph,2000)Activationlikelihoodestimation(激活似然性估计,ALE,Turkeltaubetal.,2002)目标:最大化地量化研究间位置信息的一致性;尽可能减小分析方法的主观性。脑成像数据元分析的发展主观的描述客观的统计ALE的计算(Turkeltaubetal.,2002)概念:把每个激活点拟合成一个概率分布也即这个激活点落在大脑每个voxel上的概率大小:与激活点越近的voxel,概率越大。脑成像数据元分析的发展文献中报告的激活点一个激活点落在大脑每个voxel上的概率。(d为每个voxel与激活点之间的距离;σ为分布的方差)ALE的计算(Turkeltaubetal.,2002)脑成像数据元分析的发展ALE:至少有一个激活点落在某个voxel内的概率。ALE=第i个激活点落在某个voxel内的概率。一个激活点落在大脑每个voxel上的概率。相关研究中报告的所有激活点ALE的统计检验(Turkeltaubetal.,2002)Permutationtest(置换检验)零假设:激活点没有重合,所有重合都是随机因素导致的假设元分析采集到了100个坐标(激活点);则产生100个随机坐标,然后根据这些随机坐标计算出大脑中每个voxel在零假设下的ALE值(如,重复1000次,然后求均值)——产生零假设分布;通过比较实际ALE值与随机坐标产生的ALE值,来确定显著性。脑成像数据元分析的发展ALE的统计检验(Turkeltaubetal.,2002)Permutationtest(置换检验)在H0分布下,ALE为5.72×10-3的概率为0.0001。因此,如果设置α=0.0001为显著水平,那ALE值大于5.72×10-3的voxel都视为显著(也即至少有一个激活点落在这个voxel内)。脑成像数据元分析的发展ALE的优点(Turkeltaubetal.,2002)自动化的分析除了位置信息外,也有对一致性水平的量化(ALE值)具备显著性检验,得到的结论有统计上的支持脑成像数据元分析的发展早期ALE算法的缺点:以激活点为单位,在每个voxel上,求出所有激活点对应概率的联合概率(即ALE值)。忽略了研究间的变异,属于固定效应的统计推断(fixed-effectsinference):元分析的结论不能推广到该元分析未包含的研究(胡传鹏等,2015;Eickhoffetal.,2009)。报告了较多激活点的研究对元分析的影响更大,甚至主导元分析的结果(Wageretal.,2007)。脑成像数据元分析的发展ALE的改进算法(Eickhoffetal.,2009)脑成像数据元分析的发展ALE/MA=Modeledactivation(MA)map某个voxel在特定一个实验中激活的可能性第一步:在每个实验的内部先做一次整合类比:把每个实验看做一个“被试”;每个voxel看做一个实验条件;每个实验报告出来的激活点看做一个采集到的数据点。第一步的整合“≈”对每个被试各个条件下的所有数据点求和。第一步整合的结果:每个实验在每个voxel上,都有只一个MA/ALE值。脑成像数据元分析的发展Modeledactivation(MA)map跨实验的整合第二步:以实验(“被试”)为单位,计算每个voxel上的总ALE值,并做统计检验。结果:每个voxel的总ALE值统计检验:零假设:元分析中各实验的MAmap之间没有重合,所有重合均是随机因素导致的。置换检验:零分布:从每个实验的MA图中各自随机抽一个坐标点和对应的MA值,根据这些MA值算出一个总ALE值。重复1011次,每次能得到一个总ALE值。构建出零分布。根据不同ALE值在零分布中出现的概率,确定显著性水平。ALE的改进算法(Eickhoffetal.,2009)ALE算法进一步的优化:脑成像数据元分析的发展Eickhoffetal.,2012(NeuroImage):以MA值为单位代替以voxel为单位,减少了迭代次数,加快了运算速度;Turkeltaubetal.,2012(HumanBrainMapping):取最大值代替求和的方法,进一步减少单个实验对结果的影响。脑成像元分析的步骤脑成像元分析的步骤脑成像元分析的步骤1.GingerALE:(邓沁丽,2015)脑成像元分析的步骤使用到的软件:脑成像元分析的步骤使用到的软件:2.Mango:rii.uthscsa.edu/mango用于结果呈现第一步:选好主题,查找和筛选文献1.1.选好元分析的主题工作记忆(Neeetal.,2013);Go/No-go任务(2008);奖赏加工(Bartraetal.,2013);社会决策(Fengetal.,2015).共情与自身疼痛感受是否基于共同的神经机制(Lammetal.,2011);自传体记忆、展望未来、心理理论以及默认网络是否基于共同的神经机制(Sprengetal.,2009);初级和次级奖赏的加工是否基于共同的神经机制(Sescousseetal.,2013)自己接受奖赏与观看别人接受奖赏是否基于共同的神经机制(Morellietal.,2015);脑成像元分析的步骤单个任务对应的神经机制:多个任务共同的神经机制:第一步:选好主题,查找和筛选文献1.2.查找和筛选文献查找途径:google学术(://scholar.glgoo.org/)PubMed()ISIWebofScience()已查找文献的引用列表相关领域综述的引用列表文献筛选:被试群体:如,正常成人被试;是否使用fMRI技术;使用的是全脑(whole-brain)分析,而不是感兴趣区(ROI)分析;报告了感兴趣的统计结果;激活坐标报告在标准空间里(如MNI,Talairach).脑成像元分析的步骤查找内容:与主题相关的几个关键词fMRI/functionalfairness/fair/ultimatumgame第二步:采集坐标点需要提供的信息(规定的格式):标准空间的类型(第一行):MNI或者Talairach;文献信息://作者名,年份等;//Subjects=N(被试量的信息)坐标点。每个点一行不同文献之间需要有一个空行;注意MNI与Talairach空间之间的转换。脑成像元分析的步骤第三步:使用GingerALE进行元分析3.1.计算ALE(activation-likelihood-estimation)脑成像元分析的步骤Eickhoffetal.,2012(NeuroImage):Turkeltaubetal.,2012(HumanBrainMapping):内置在GingerALE软件里的算法第三步:使用GingerALE进行元分析3.2.矫正结果:Settings脑成像元分析的步骤第三步:使用GingerALE进行元分析3.2.矫正结果关于FDR的bug(在2.3.3以后的版本中更正)FDR矫正的原理:假设有N个比较,对应有N个p值。i).所有p值从小到大排序:p(1),p(2),p(3)….p(N);ii).若想控制FDR不能超过q,则只需找到最大的正整数i,使得p(i)=(i*q)/N.然后,挑选对应p(1),p(2),...,p(i)的比较做为有显著差异的比较,这样就能从统计学上保证FDR不超过q。脑成像元分析的步骤第三步:使用GingerALE进行元分析3.3.选择输出结果的路径ToolsPreferences脑成像元分析的步骤第三步:使用GingerALE进行元分析3.3.点击“Compute”,进行运算。脑成像元分析的步骤第三步:使用GingerALE进行元分析3.4.查看输出文件ALE图像:*_ALE.niiP值图像:*_P.nii矫正后的ALE图像:*_ALE_pID05.niicluster图像:*_clust.nii3.4.1.图像文件脑成像元分析的步骤第三步:使用GingerALE进行元分析3.4.查看输出文件cluster表格(*_cluster.xls)参数和统计信息(*_cluster.txt)1.使用的参数;2.每个cluster内,更详尽的label信息3.每个文献对各个cluster的贡献值3.4.2.文本文件脑成像元分析的步骤第四步:使用Mango软件呈现元分析结果(rii.uthscsa.edu/mango)4.1.打开模板图像:openopenImage选择推荐的模板:Colin27_T1_seg_MNI.niiColin27_T1_seg_MNI_2x2x2.nii脑成像元分析的步骤第四步:使用Mango软件呈现元分析结果4.2.打开矫正后的ALE图像:fileAddOverlay选择矫正后的ALE图像:*_ALE_pID.niiEditupdatetoImageRange(重要)选择Atlas,如图a所示。选择主窗口(mainslice)呈现的方位:viewmainslice想要的方位选择是否需要十字准线:viewmaincrosshairs保存主窗口的图像:Imagecreatesnapshot图a脑成像元分析的步骤第五步:做contrast和conjunction分析—对比两个任务5.1.根据步骤三,计算出两个任务各自的ALE5.2.合并两个任务的坐标点(可以直接复制粘贴)打开GingerALE,选择“contraststudies”;在DataSet1&2里分别选择两个任务矫正后的ALE图像;FileOpenALEImage1;OpenALEImage2保存两个任务的坐标点;FileMerge&SaveFoci(如pooled.txt)脑成像元分析的步骤第五步:做contrast和conjunction分析—对比两个任务5.3.根据步骤三,计算出两个任务合并的ALE(pooled.txt)5.4.根据5.1~5.3得到的ALE图像,做contrast和conjunction分析打开GingerALE,选择“contraststudies”;在DataSet1&2里分别选择两个任务矫正后的ALE图像;FileOpenALEImage1;OpenALEImage2在PooledDataSets里选择两个任务合并后的ALE图像;FileOpenPooledALEImage选好相应的矫正方法和输出文件名,点击“Compute”.脑成像元分析的步骤第五步:做contrast和conjunction分析—对比两个任
本文标题:脑成像数据的元分析-ALE原理与操作
链接地址:https://www.777doc.com/doc-7102397 .html