您好,欢迎访问三七文档
28#欧几里得(Euclid)国籍职业生卒代表作品古希腊数学家公元前330年—公元前275年《几何原本》主要成就《几何原本》、完全数……生平佚事“懂几何者”柏拉图学院“柏拉图学园”就是,又叫“阿加德米”(Academy)学园。今天的大学“学院”就是从“阿加德米”这个词来的。一天,一群年轻人来到位于雅典城郊外林荫中的柏拉图学园。只见学园的大门紧闭着,门口挂着一块木牌,上面写着:“不懂几何者,不得入内!”这是当年柏拉图亲自立下的规矩,为的是让学生们知道他对数学的重视,然而却把前来求教的年轻人给闹糊涂了。有人在想,正是因为我不懂数学,才要来这儿求教的呀,如果懂了,还来这儿做什么?正在人们面面相觑,不知是进是退的时候,欧几里得从人群中走了出来,只见他整了整衣冠,看了看那块牌子,然后果断地推开了学园大门,头也没有回地走了进去。生平佚事编写巨著在欧几里得以前,几何学知识缺乏系统性。大多数是片断、零碎的知识。随着社会经济的繁荣和发展,特别是随着农林畜牧业的发展、土地开发和利用的增多,把这些几何学知识加以条理化和系统化,成为一整套前后贯通的知识体系,成为科学进步的大势所趋。欧几里得下定决心要完成这一工作,成为几何第一人。为了完成这一重任,欧几里得从雅典来到埃及新埠—亚历山大城,在此地的无数个日日夜夜里,经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。生平佚事“没有捷径”当时亚里山大国王托勒密一世也想赶这一时髦,学点儿几何学。虽然这位国王见多识广,但欧氏几何却令他学的很吃力。于是,他问欧几里得“学习几何学有没有什么捷径可走?”,欧几里得笑道:“抱歉,陛下!学习数学和学习一切科学一样,是没有什么捷径可走的。学习数学,人人都得独立思考,就像种庄稼一样,不耕耘是不会有收获的。在这一方面,国王和普通老百姓是一样的。”从此,“在几何学里,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。欧几里得成就完全数欧几里得在《几何原本》中还对完全数做了探究,他通过2^(n-1)·(2^n-1)的表达式发现头四个完全数的。当n=2:2^1(2^2-1)=6当n=3:2^2(2^3-1)=28当n=5:2^4(2^5-1)=496当n=7:2^6(2^7-1)=8128一个偶数是完全数,当且仅当它具有如下形式:2^(n-1).(2^n-1),此事实的充分性由欧几里得证明,而必要性则由欧拉所证明。欧几里得成就几何原本《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作。这部书已经基本囊括了几何学从公元前7世纪的古希腊,一直到公元前4世纪——欧几里得生活时期——前后总共400多年的数学发展历史。它不仅保存了许多古希腊早期的几何学理论,而且通过欧几里得开创性的系统整理和完整阐述,使这些远古的数学思想发扬光大。它开创了古典数论的研究,在一系列公理、定义、公设的基础上,创立了欧几里得几何学体系,成为用公理化方法建立起来的数学演绎体系的最早典范。全书共分13卷。书中包含了5条“公理”、5条“公设”、23个定义和467个命题。欧几里得人物评价欧几里得是古希腊最负盛名、最有影响的数学家之一。欧几里得的《几何原本》对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》是古希腊数学发展的顶峰。欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果,整理在严密的逻辑系统运算之中,使几何学成为一门独立的、演绎的科学。
本文标题:欧几里得简介
链接地址:https://www.777doc.com/doc-7107660 .html