您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 对数的运算法则(1)
(1)等价关系:负数和零没有对数结论:指数式对数式(1)常用对数:以log10N=lgN(2)自然对数:以logeN=lnN(e=2.71828······)知识回顾(a>0,a≠1)NaxxNalog(a>0,a≠1)NaxxNalogNaxxNalog1loga(a>0,a≠1)0aalog11loga(a>0,a≠1)0aalog1aalog1NaNalogNaNalog(N>0))()(),()(),(),(RnbaabRnmaaRnmaaaRnmaaannnmnnmnmnmnmnm指数运算法则知识回顾问题:指数与对数都是一种运算,而且它们互为逆运算,指数运算有一系列性质,那么对数运算是否也有类似的性质呢?问题1:研究以下两组对数:(1)log232,log24,log28;(2)log327,log39,log33这三个对数之间有怎样的内在联系?(2)log327=3,log33=1,log39=2loga(M·N)=logaM十logaN(a0且a≠1,M0,N0)知识探究探究1:(1)log232=5,log24=2,log28=3;分析:loga(M·N)=logaM十logaN(a0且a≠1,M0,N0)am·an=am+nam/an=am-nNMloga=logaM-logaN(am)n=amnlogaMn=nlogaM公式特征:积变和;商变差;乘方变为积特别提醒NMNMaaaloglog)(log,loglog)(logNMMNaaa例1解(1)解(2)用,logxa,logyazalog表示下列各式:32log)2(;(1)logzyxzxyaazxyzxyaaalog)(loglog3121232log)(loglogzyxzyxaaazyxaaalogloglog31212logloglogzyxaaazyxaaalog31log21log2知识运用(1)例2计算:18lg7lg37lg214lg(2)9lg243lg2.1lg10lg38lg27lg)3(练习(1)(4)(3)(2)1.求下列各式的值:15log5log332lg5lg31log3log553log6log2236log2)25lg()313(log5155log32log2110lg11log50133log12.用lgx,lgy,lgz表示下列各式:练习(1)(4)(3)(2))lg(xyzzxy2lgzxy3lg=lgx+2lgy-lgz;zyx2lg=lgx+lgy+lgz;=lgx+3lgy-21lgz;zyxlglg2lg21例3计算(1)解:4log233349积、商、幂的对数运算法则:如果a0,a1,M0,N0有:)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa知识小结
本文标题:对数的运算法则(1)
链接地址:https://www.777doc.com/doc-7109779 .html