您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 第七章----沸腾换热
第七章凝结与沸腾换热1、重点内容:①凝结与沸腾换热机理及其特点;②膜状凝结换热分析解及实验关联式;③大容器饱和核状沸腾及临界热流密度。2、掌握内容:掌握影响凝结与沸腾换热的因素。3、了解内容:①了解强化凝结与沸腾换热的措施及发展现状、动态。②蒸汽遇冷凝结,液体受热沸腾属对流换热。其特点是:伴随有相变的对流换热。③工程中广泛应用的是:冷凝器及蒸发器、再沸器、水冷壁等。§7-1凝结换热现象凝结换热实例•锅炉中的水冷壁•寒冷冬天窗户上的冰花•许多其他的工业应用过程凝结换热的关键点•凝结可能以不同的形式发生,膜状凝结和珠状凝结•冷凝物相当于增加了热量进一步传递的热阻•层流和湍流膜状凝结换热的实验关联式•影响膜状凝结换热的因素•会分析竖壁和横管的换热过程,及Nusselt膜状凝结理论gswtt1、凝结换热现象蒸汽与低于饱和温度的壁面接触时,将汽化潜热释放给固体壁面,并在壁面上形成凝结液的过程,称凝结换热现象。有两种凝结形式。2、凝结换热的分类根据凝结液与壁面浸润能力不同分两种(1)膜状凝结定义:凝结液体能很好地湿润壁面,并能在壁面上均匀铺展成膜的凝结形式,称膜状凝结。特点:壁面上有一层液膜,凝结放出的相变热(潜热)须穿过液膜才能传到冷却壁面上,此时液膜成为主要的换热热阻gswtt(2)珠状凝结定义:凝结液体不能很好地湿润壁面,凝结液体在壁面上形成一个个小液珠的凝结形式,称珠状凝结。特点:凝结放出的潜热不须穿过液膜的阻力即可传到冷却壁面上。所以,在其它条件相同时,珠状凝结的表面传热系数定大于膜状凝结的传热系数。gswtt§7-2膜状凝结分析解及关联式1、纯净蒸汽层流膜状凝结分析解假定:1)常物性;2)蒸气静止;3)液膜的惯性力忽略;4)气液界面上无温差,即液膜温度等于饱和温度;5)膜内温度线性分布,即热量转移只有导热;6)液膜的过冷度忽略;7)忽略蒸汽密度;8)液膜表面平整无波动gswtt根据以上8个假设从边界层微分方程组推出努塞尔的简化方程组,从而保持对流换热理论的统一性。同样的,凝结液膜的流动和换热符合边界层的薄层性质。以竖壁的膜状凝结为例:x坐标为重力方向,如图所示。在稳态情况下,凝结液膜流动的微分方程组为:2222)(0ytaytvxtuyugdxdpyuvxuuyvxullll下脚标l表示液相考虑假定(3)液膜的惯性力忽略2222)(0ytaytvxtuyugdxdpyuvxuuyvxullll0)(yuvxuul将动量方程应用于边界层外的蒸汽,并考虑假定(7)忽略蒸汽密度,边界层外的压力变化更大0gdxdpv0ytvxtu002222ytayuglll只有u和t两个未知量,于是,上面得方程组化简为:考虑假定(5)膜内温度线性分布,即热量转移只有导热边界条件:swttyuyttuy,0dd0,0时,时,1/4llsw2l4(tt)xgr求解上面方程可得:(1)液膜厚度定性温度:2wsmttt注意:r按ts确定(2)局部表面传热系数1/423llxlswgrh4(tt)xsw(tttC)整个竖壁的平均表面传热系数1/423lllVx0lswgr1hhdx0.943ll(tt)定性温度:2wsmttt注意:r按ts确定(3)修正:实验表明,由于液膜表面波动,凝结换热得到强化,因此,实验值比上述得理论值高20%左右1/423llVlswgrh1.13l(tt)修正后:(4)当是水平圆管及球表面上的层流膜状凝结时,其平均表面传热系数为:1/423llHlswgrh0.729d(tt)1/423llSlswgrh0.826d(tt)水平管:球:横管与竖管的对流换热系数之比:4177.0dlhhVH2膜层中凝结液的流动状态30Re1800Rec无波动层流有波动层流湍流凝结液体流动也分层流和湍流,并且其判断依据仍然时Re,elduRe式中:ul为x=l处液膜层的平均流速;de为该截面处液膜层的当量直径。ecd4A/P4b/b4lml4u4qReswmlh(tt)lrqsw4hl(tt)Rer如图由热平衡所以横管:用d代替L并且横管一般都处于层流状态3湍流膜状凝结换热实验证明:(1)膜层雷诺数Re=1800时,液膜由层流转变为紊流;(2)横管均在层流范围内,因为管径较小。特征:对于紊流液膜,热量的传递:(1)靠近壁面极薄的层流底层依靠导热方式传递热量;(2)层流底层以外的紊流层以紊流传递的热量为主。因此,紊流液膜换热远大于层流液膜换热。计算方法:对于竖壁紊流膜状换热,沿整个壁面上的平均表面传热系数ccltxxhhh1ll式中:hl为层流段的传热系数;ht为紊流段的传热系数;xc为层流转变为紊流时转折点的高度l为竖壁的总高度1/31/41/23/4wssReNuGaPr58Pr(Re253)9200Pr利用上面思想,整理的实验关联式:式中:。除用壁温计算外,其余物理量的定性温度均为Nuhl/;32Gagl/wPrwtst。§6-3影响膜状凝结的因素工程实际中所发生的膜状凝结过程往往比较复杂,受各种因素的影响。1.不凝结气体不凝结气体增加了传递过程的阻力,同时使饱和温度下降,减小了凝结的驱动力t。h2.蒸气流速流速较高时,蒸气流对液膜表面产生模型的粘滞应力。如果蒸气流动与液膜向下的流动同向时,使液膜拉薄,增大;反之使减小。h4.液膜过冷度及温度分布的非线性如果考虑过冷度及温度分布的实际情况,要用下式代替计算公式中的,5.管子排数管束的几何布置、流体物性都会影响凝结换热。前面推导的横管凝结换热的公式只适用于单根横管。rpswrr0.68c(tt)3.过热蒸气要考虑过热蒸气与饱和液的焓差。6.管内冷凝此时换热与蒸气的流速关系很大。蒸气流速低时,凝结液主要在管子底部,蒸气则位于管子上半部。流速较高时,形成环状流动,凝结液均匀分布在管子四周,中心为蒸气核。7.凝结表面的几何形状强化凝结换热的原则是尽量减薄粘滞在换热表面上的液膜的厚度。可用各种带有尖峰的表面使在其上冷凝的液膜拉薄,或者使已凝结的液体尽快从换热表面上排泄掉。§6-4沸腾换热现象沸腾的定义:沸腾指液体吸热后在其内部产生汽泡的汽化过程称为沸腾。沸腾的特点1)液体汽化吸收大量的汽化潜热;2)由于汽泡形成和脱离时带走热量,使加热表面不断受到冷流体的冲刷和强烈的扰动,所以沸腾换热强度远大于无相变的换热。沸腾换热分类:1)大容器沸腾(池内沸腾);2)强制对流沸腾(管内沸腾)上述每种又分为过冷沸腾和饱和沸腾。产生沸腾的条件:理论分析与实验证明,产生沸腾的条件:1)液体必须过热;2)要有汽化核心1大容器饱和沸腾曲线(1)大容器沸腾定义:指加热壁面沉浸在具有自由表面的液体中所发生的沸腾称为大容器沸腾。特点:产生的气泡能自由浮升,穿过液体自由面进入容器空间。(2)饱和沸腾定义:液体主体温度达到饱和温度,壁面温度高于饱和温度所发生的沸腾称为饱和沸腾。特点:随着壁面过热度的增高,出现4个换热规律全然不同的区域。(3)过冷沸腾指液体主体温度低于相应压力下饱和温度,壁面温度大于该饱和温度所发生的沸腾换热,称过冷沸腾。(4)大容器饱和沸腾曲线:表征了大容器饱和沸腾的全部过程,共包括4个换热规律不同的阶段:自然对流、核态沸腾、过渡沸腾和稳定膜态沸腾,如图所示:qmaxqmin如图6-11所示,横坐标为壁面过热度(对数坐标);纵坐标为热流密度(算术密度)。从曲线变化规律可知:随壁面过热度的增大,区段Ⅰ、Ⅱ、Ⅲ、Ⅳ将整个曲线分成四个特定的换热过程,其特性如下:1)单相自然对流段(液面汽化段)壁面过热度小时(图中℃)沸腾尚未开始,换热服从单相自然对流规律。4t2)核态沸腾(饱和沸腾)随着的上升,在加热面的一些特定点上开始出现汽化核心,并随之形成汽泡,该特定点称为起始沸点。其特点是:t①开始阶段,汽化核心产生的汽泡互不干扰,称为孤立汽泡区;②随着的上升,汽化核心增加,生成的汽泡数量增加,汽泡互相影响并合成汽块及汽柱,称为相互影响区。t③随着的增大,q增大,当增大到一定值时,q增加到最大值,汽泡扰动剧烈,汽化核心对换热起决定作用,则称该段为核态沸腾(泡状沸腾)。t其特点:换热强度大,其终点的热流密度q达最大值。工业设计中应用该段。t3)过渡沸腾从峰值点进一步提高,热流密度q减小;当增大到一定值时,热流密度减小到,这一阶段称为过渡沸腾。该区段的特点是属于不稳定过程。tminq原因:汽泡的生长速度大于汽泡跃离加热面的速度,使汽泡聚集覆盖在加热面上,形成一层蒸汽膜,而蒸汽排除过程恶化,致使qm下降。t4)稳定膜态沸腾从开始,随着的上升,气泡生长速度与跃离速度趋于平衡。此时,在加热面上形成稳定的蒸汽膜层,产生的蒸汽有规律地脱离膜层,致使上升时,热流密度q上升,此阶段称为稳定膜态沸腾。minqtt其特点:(1)汽膜中的热量传递不仅有导热,而且有对流;(2)辐射热量随着的加大而剧增,使热流密度大大增加;(3)在物理上与膜状凝结具有共同点:前者热量必须穿过热阻大的汽膜;后者热量必须穿过热阻相对较小的液膜。t几点说明:(1)上述热流密度的峰值qmax有重大意义,称为临界热流密度,亦称烧毁点。一般用核态沸腾转折点DNB作为监视接近qmax的警戒。这一点对热流密度可控和温度可控的两种情况都非常重要。(2)对稳定膜态沸腾,因为热量必须穿过的是热阻较大的汽膜,所以换热系数比凝结小得多。2汽化核心的分析(1)汽泡的成长过程实验表明,通常情况下,沸腾时汽泡只发生在加热面的某些点,而不是整个加热面上,这些产生气泡的点被称为汽化核心,较普遍的看法认为,壁面上的凹穴和裂缝易残留气体,是最好的汽化核心,如图所示。1.汽泡稳定存在条件:设有一个容器,底面加热,上面压力ps对应ts,如中间有汽泡,其内压力pv,温度tv,周围流体对应pl,tl。稳定条件:热平衡力平衡热平衡tl=tvtltv汽泡向流体传热,汽泡中的汽要凝结缩小;tltv液体向汽泡传热,汽泡中的汽要膨胀长大。力平衡取半个汽泡为控制体,受两个力汽泡动力学简介:要使气泡长大,泡内压力需克服表面张力对外做功,设气泡体积膨胀了dV,相应的表面积增量为dA,则做功量dAdVppdWlv)(气泡处于稳定的力平衡状态时dW=0224,34,)(RARVdAdVpplv上式为气泡能存在的条件。要使气泡逐渐长大,则Rpplv2)(§7-5沸腾换热计算式沸腾换热也是对流换热的一种,因此,牛顿冷却公式仍然适用,即thtthqsw)(但对于沸腾换热的h却又许多不同的计算公式1大容器饱和核态沸腾影响核态沸腾的因素主要是过热度和汽化核心数,而汽化核心数受表面材料、表面状况、压力等因素的支配,所以沸腾换热的情况液比较复杂,导致了个计算公式分歧较大。目前存在两种计算是:(1)针对一种液体的计算公式;(2)广泛适用于各种液体的计算式;(1)适用于水的米海耶夫计算式Pa65104~10在压力下大容器饱和沸腾计算式:5.033.21ptCh)(122.033.35.01KNmWC按thq15.07.02pqCh)(533.015.03.03.02KNmWC(2)适用于各种液体的计算式:既然沸腾换热也属于对流换热,那么,st=f(Re,Pr)也应该适用。罗森诺正是在这种思路下,通过大量实验得出了如下实验关联式:33.0)(PrvllwlslplgrqCrtc上式可以改写为:321Pr)(
本文标题:第七章----沸腾换热
链接地址:https://www.777doc.com/doc-7115942 .html