您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 2020年北京市中考数学学科考试说明
2020年北京市中考数学学科考试说明数学2019年北京市中考数学学科《考试说明》(以下简称“2019年《考试说明》”)确定了《义务教育数学课程标准(2011年版)》规定的“课程目标”与“课程内容”为考试范围,明确了“考查目标与要求”和“考试内容的知识要求层次”,通过阐述“试卷的内容、题型及分数分配”体现了2019年中考数学学科的试卷结构,通过调整“参考样题”体现了近几年命题指导思想和考试内容改革成果。01调整部分考试内容的知识层次要求依据《义务教育数学课程标准(2011年版)》的课程内容要求,对“考试内容的知识层次要求”进行优化,体现出知识结构体系的整体性与内在联系。例如,将“数轴”的A级要求调整到“实数”的A级要求,B级要求调整到“有理数”的B级要求;将“科学记数法和近似数”的A级要求“会用科学记数法表示数”调整到“整式”的A级要求等。02更换部分参考样题“参考样题”体现了近几年中考数学学科试题的命制思想。用较好地体现学科改革方向的试题对原样题进行替换,使“参考样题”能更好地体现学科本质,贴近社会、贴近学生生活,凸显基础性、综合性、实践性和创新性的要求,引导学生积极思考,体现能力培养和价值观教育。(1)关注四基要求 体现数学基础《义务教育数学课程标准(2011版)》指出:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。”在调整样题过程中,注重体现数与代数、图形与几何、统计与概率等基础知识,突出对基本技能、基本思想和基本活动经验考查的体现。例如,将2018年中考数学卷第17题编入2019年《考试说明》中。(2)关注教学过程 体现数学本质《义务教育数学课程标准(2011年版)》指出:“数学教学的重要目标之一是让学生亲身经历数学知识形成、发展和应用的过程,积累数学活动经验,感悟数学思想。”在调整样题过程中,注重关注学生的数学学习完整过程,体现学生日常学习积累的活动经验。例如,将2018年中考数学卷第24、25题编入2019年《考试说明》中。(3)关注实践能力 体现应用价值现实生活中蕴含着大量与数学有关的问题,通过建立数学模型用数学的方法解决现实问题,体现了数学的应用价值。在调整样题过程中,扩大选材范围,加强与学生生活实际的联系,贴近生活,注重体现学生知识运用能力和实践能力,考查学生做事能力。例如,将2018年中考数学卷第14、15题编入2019年《考试说明》中。2019-2020学年数学中考模拟试卷一、选择题1.下列说法正确的是()A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为72.下列计算错误的是()A.(﹣x)2•x3=x5B.(﹣x2y)3=x6y3C.(﹣x)2•(﹣x)3=﹣x5D.x2+x2=2x23.不等式组214(1)xxxx的解集为()A.x>0B.x>1C.无解D.0<x<14.若正比例函数y=(a﹣4)x的图象经过第一、三象限,化简2(3)a的结果是()A.a﹣3B.3﹣aC.(a﹣3)2D.(3﹣a)25.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°6.已知在半径为5的⊙O中,AB,CD是互相垂直且相等的两条弦,垂足为点P,且OP=,则弦AB的长为()A.4B.6C.8D.107.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在这些小正方形的格点上,AB,CD相交于点E,则sin∠AEC的值为()A.255B.3510C.12D.1048.下列运算正确的是()A.a8÷a2=a6B.(a+b)2=a2+b2C.a2•a3=a6D.(﹣a2)3=a69.已知抛物线223yxmxm(m是常数),且无论m取何值,该抛物线都经过某定点H,则点H的坐标为A.3,12B.3,12C.39,24D.39,2410.方程24222xxxx的解为()A.2B.2或4C.4D.无解11.肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表:PM2.5指数150155160165天数3211则该周PM2.5指数的众数和中位数分别是()A.150,150B.150,155C.155,150D.150,152.512.如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M,N分别是BD,BC上的动点,则CM+MN的最小值是()A.B.2C.2D.4二、填空题13.在四边形ABCD中,5ABAD,12BC,90BD,点M在边BC上,点N在四边形ABCD内部且到边AB、AD的距离相等,若要使CMN是直角三角形且AMN是等腰三角形,则MN__________.14.已知关于x的方程240xxm有一个根为3,则m的值为_______.15.计算:(6x4﹣8x3)÷(﹣2x2)=_____.16.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是_____度.17.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为_____.18.如图,在ABC中,AD平分BAC,BDAD,点E是BC的中点,连结DE,且6AB,10AC,则DE____.三、解答题19.已知直线12yxb与x轴交于点A(﹣4,0),与y轴交于点B.(1)求b的值;(2)把△AOB绕原点O顺时针旋转90°后,点A落在y轴的A′处,点B若在x轴的B′处.①求直线A′B′的函数关系式;②设直线AB与直线A′B′交于点C,矩形PQMN是△AB′C的内接矩形,其中点P,Q在线段AB′上,点M在线段B′C上,点N在线段AC上.若矩形PQMN的两条邻边的比为1:2,试求矩形PQMN的周长.20.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2.(1)求BE长;(2)求tanC的值.21.如图,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系,并说明理由.22.小丽家在装修,虽然房间比较小,但是小丽总想睡1.8米宽的大床,那样抱着她的大娃娃睡多好啊,妈妈说:“你已经八年级了,自己设计一下,怎样可以把1.8米宽的床放好,并且还比较美观?”下面是小丽的第一次设计图:1.8米宽的床一般长2.2米,床头柜一般需要50cm,门宽80cm,只能往房里开。妈妈看了设计图以后,怀疑地说:“像你这样设计,门好像打不开啊。”请通过计算说明,此时门能否完全打开?小丽考虑将家具整体平移一下,她又设计了第二种方案,这时妈妈看了一会,问小丽:“你确定门能完全打开?”,小丽得意地笑了,请通过计算说明为什么这次可以了.23.计算:221122cos302224.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.25.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连结DB,过点E作EM∥BD,交BA的延长线于点M。(1)求⊙O的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠DPA=45°时,求图中阴影部分的面积。【参考答案】***一、选择题题号123456789101112答案CBDABCAACCBC二、填空题13.6517或651814.15.﹣3x2+4x.16.126017.7×10718.2三、解答题19.(1)b=2;(2)①y=﹣2x+4;②当PN:PQ=1:2时,矩形PQMN的周长为8;当PQ:PN=1:2时,矩形PQMN的周长为6.【解析】【分析】(1)把A(﹣4,0)代入12yxb求得b值即可;(2)①先求得B点的坐标为(0,2),根据旋转的性质可得A'(0,4),B'(2,0),再用待定系数法求得直线A'B'的解析式即可;②分PN:PQ=1:2和PQ:PN=1:2求矩形PQMN的周长即可.【详解】解:(1)由题意得把A(﹣4,0)代入12yxb,得1402()b,b=2;(2)①由(1)得:122yx,令x=0,得y=2,∴B(0,2)由旋转性质可知OA'=OA=4,OB'=OB=2∴A'(0,4),B'(2,0)设直线A'B'的解析式为y=ax+b’,把A'、B'分别代入得:420bab,解得24ab∴直线A'B'的解析式为y=﹣2x+4;②∵点N在AC上∴可设N(x,122x)(﹣4<x<0)∵四边形PQMN为矩形∴NP=MQ=122x(ⅰ)当PN:PQ=1:2时PQ=2PN=12(2)42xx∴Q(x+4+x,0)∴M(2x+4,122x)∵点M在B'C上∴12(24)422xx解得43x此时,PQ=83∴矩形PQMN的周长为:482833();(ⅱ)当PN:PQ=2:1时PQ=12PN=111(2)1224xx∴Q(114xx,0)M(514x,122x)∵点M在B'C上∴512(1)4242xx解得x=0此时PN=2,PQ=1∴矩形PQMN的周长为:2(2+1)=6.综上所述,当PN:PQ=1:2时,矩形PQMN的周长为8.当PQ:PN=1:2时,矩形PQMN的周长为6.【点睛】本题考查了待定系数法求一次函数及其坐标特征、旋转的性质,熟练运用一次函数的性质及旋转的性质是解决问题的关键.20.(1)BE=8;(2)tanC=4.【解析】【分析】(1)连接AD,由圆周角定理可知∠AEB=∠ADB=90°,由等腰三角形的性质可得BD=CD,再利用中位线求出CE的长,然后根据勾股定理求出BE的长;(2)在直角三角形CEB中,根据正切的定义求解即可.【详解】解:(1)连接AD,如图所示:∵以AB为直径的⊙O与BC交于点D,∴∠AEB=∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是ABC的中位线,∴OD∥AC,∴BM=EM,∴CE=2MD=4,∴AE=AC﹣CE=6,∴BE=2222ABAE106=8;(2)在直角三角形CEB中,∵CE=4,BE=8,∴tanC=82BECE=4.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形中位线判定与性质,勾股定理及锐角三角函数的知识.证明OD是ABC的中位线是解(1)的关键,熟记锐角的正切等于对边比邻边是解(2)的关键.21.(1)详见解析;(2)直线BD与⊙A相切,理由详见解析.【解析】【分析】(1)①以点A为圆心,以BC的长度为半径画圆即可;②以点A为圆心,以任意长为半径画弧,与边AB、AC相交于两点E、F,再以点B为圆心,以同等长度为半径画弧,与AB相交于一点M,再以点M为圆心,以EF长度为半径画弧,与前弧相交于点N,作射线BN即可得到∠ABD;(2)根据内错角相等,两直线平行可得AC∥BD,再根据平行线间的距离相等可得点A到BD的距离等于BC的长度,然后根据直线与圆的位置关系判断直线BD与⊙A相切.【详解】解:(1)如图所示;(2)直线BD与⊙A相切.∵∠AB
本文标题:2020年北京市中考数学学科考试说明
链接地址:https://www.777doc.com/doc-7149298 .html