您好,欢迎访问三七文档
教师课时教案备课人杨晓春授课时间课题1.1.3循环结构课标要求1.掌握程序框图的概念;2.会用通用的图形符号表示算法;3.掌握画程序框图的基本规则,能正确画出程序框图;教学目标知识目标掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。技能目标通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。情感态度价值观通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。重点循环结构难点综合运用这些知识正确地画出程序框图。教学过程及方法问题与情境及教师活动学生活动一.导入新课1.设计一个算法的程序框图的基本思路:第一步,用自然语言表述算法步骤.第二步,确定每个算法步骤所包含的逻辑结构,并用相应的程序框图表示.第三步,将所有步骤的程序框图用流程线连接起来,并加上两个终端框.2.算法的基本逻辑结构有哪几种?用程序框图分别如何表示?(顺序结构、条件结构)3.前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.二.研探新知探究(一):循环结构提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解.1教师课时教案问题与情境及教师活动学生活动(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.显然,循环结构中一定包含条件结构。(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点:两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.探究(二):应用实例【例1】设计一个计算1+2+……+n的值的算法,并画出程序框图.算法分析:通常,我们按照下列过程计算1+2+……+100的值.第1步,0+1=1.第2步,1+2=3.第3步,3+3=6.第4步,6+4=10.……第100步,4950+100=5050.2教师课时教案教学过程及方法问题与情境及教师活动学生活动显然,这个过程中包含重复操作的步骤,可以用循环结构表示.分析上述计算过程,可以发现每一步都可以表示为第(i-1)步的结果+i=第i步的结果.为了方便、有效地表示上述过程,我们用一个累加变量S来表示第一步的计算结果,即把S+i的结果仍记为S,从而把第i步表示为S=S+i,其中S的初始值为0,i依次取1,2,…,100,由于i同时记录了循环的次数,所以也称为计数变量.解决这一问题的算法是:第一步,令i=1,S=0.第二步,S=S+i.第三步,i=i+1.第四步,若in成立,则输出S;否则转第二步,,结束算法.程序框图如右:上述程序框图用的是当型循环结构,如果用直到型循环结构表示,则程序框图如下:点评:这是一个典型的用循环结构解决求和的问题,有典型的代表意义,可把它作为一个范例,仔细体会三种逻辑结构在程序框图中的作用,学会画程序框图.【练习1】如何画出求1+2+3+……+100的程序框图?解:解决这一问题的算法是:第一步,令i=1,S=0.第二步,S=S+i.第三步,i=i+1.第四步,若i100成立,则输出S;否则转第二步,,结束算法.程序框图如右:3教师课时教案教学过程及方法问题与情境及教师活动学生活动课堂检测1、右边的程序框图,输出S=__________?2、设计计算13+33+53+…+993的算法程序,并画出相应的流程图。解:解决这一问题的算法是:第一步,令p=0,i=1.第二步,p=p+i2.第三步,i=i+2.第四步,若i99成立,则输出S;否则转第二步,,结束算法.程序框图如图所示:课堂总结:(1)循环结构的概念;(2)掌握循环结构的特点;(3)会把循环结构由数学描述转化为程序框图表达。课堂作业:1.设计一个计算1×3×5×…×99的算法,画出程序框图.教学小结(1)熟练掌握两种循环结构的特点及功能.(2)能用两种循环结构画出求和等实际问题的程序框图,进一步理解学习算法的意义课后反思4
本文标题:循环结构教案
链接地址:https://www.777doc.com/doc-7165575 .html