您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > (完整版)等比数列知识点总结
等比数列知识梳理:1、等比数列的定义:*12,nnaqqnnNa0且,q称为公比2、通项公式:11110,0nnnnaaaqqABaqABq,首项:1a;公比:q推广:nmnmnnnmnmmmaaaaqqqaa3、等比中项:(1)如果,,aAb成等比数列,那么A叫做a与b的等差中项,即:2Aab或Aab注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列na是等比数列211nnnaaa4、等比数列的前n项和nS公式:(1)当1q时,1nSna(2)当1q时,11111nnnaqaaqSqq11''11nnnaaqAABABAqq(,,','ABAB为常数)5、等比数列的判定方法:(1)用定义:对任意的n,都有11(0){}nnnnnnaaqaqqaaa或为常数,为等比数列(2)等比中项:21111(0){}nnnnnnaaaaaa为等比数列(3)通项公式:0{}nnnaABABa为等比数列6、等比数列的证明方法:依据定义:若*12,nnaqqnnNa0且或1{}nnnaqaa为等比数列7、等比数列的性质:(1)当1q时①等比数列通项公式1110nnnnaaaqqABABq是关于n的带有系数的类指数函数,底数为公比q;②前n项和111111''1111nnnnnnaqaaqaaSqAABABAqqqq,系数和常数项是互为相反数的类指数函数,底数为公比q。(2)对任何*,mnN,在等比数列{}na中,有nmnmaaq,特别的,当1m时,便得到等比数列的通项公式。因此,此公式比等比数列的通项公式更具有一般性。(3)若*(,,,)mnstmnstN,则nmstaaaa。特别的,当2mnk时,得2nmkaaa注:12132nnnaaaaaa(4)数列{}na,{}nb为等比数列,则数列{}nka,{}nka,{}kna,{}nnkab,{}nnab(k为非零常数)均为等比数列。(5)数列{}na为等比数列,每隔*()kkN项取出一项23(,,,,)mmkmkmkaaaa仍为等比数列(6)如果{}na是各项均为正数的等比数列,则数列{log}ana是等差数列(7)若{}na为等比数列,则数列nS,2nnSS,32,nnSS,成等比数列(8)若{}na为等比数列,则数列12naaa,122nnnaaa,21223nnnaaa成等比数列(9)①当1q时,110{}0{}{nnaaaa,则为递增数列,则为递减数列②当1q0时,110{}0{}{nnaaaa,则为递减数列,则为递增数列③当1q时,该数列为常数列(此时数列也为等差数列);④当0q时,该数列为摆动数列.(10)在等比数列{}na中,当项数为*2()nnN时,1SSq奇偶二例题解析【例1】已知Sn是数列{an}的前n项和,Sn=pn(p∈R,n∈N*),那么数列{an}.()A.是等比数列B.当p≠0时是等比数列B.C.当p≠0,p≠1时是等比数列D.不是等比数列【例2】已知等比数列1,x1,x2,…,x2n,2,求x1·x2·x3·…·x2n.【例3】{a}(1)a=4an25等比数列中,已知,=-,求通项公12式;(2)已知a3·a4·a5=8,求a2a3a4a5a6的值.【例4】设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2.【例5】求数列的通项公式:(1){an}中,a1=2,an+1=3an+2(2){an}中,a1=2,a2=5,且an+2-3an+1+2an=0三考点分析考点一:等比数列定义的应用1、数列na满足1123nnaan,143a,则4a_________.2、在数列na中,若11a,1211nnaan,则该数列的通项na______________.考点二:等比中项的应用1、已知等差数列na的公差为2,若1a,3a,4a成等比数列,则2a()A.4B.6C.8D.102、若a、b、c成等比数列,则函数2yaxbxc的图象与x轴交点的个数为()A.0B.1C.2D.不确定3、已知数列na为等比数列,32a,24203aa,求na的通项公式.考点三:等比数列及其前n项和的基本运算1、若公比为23的等比数列的首项为98,末项为13,则这个数列的项数是()A.3B.4C.5D.62、已知等比数列na中,33a,10384a,则该数列的通项na_________________.3、若na为等比数列,且4652aaa,则公比q________.4、设1a,2a,3a,4a成等比数列,其公比为2,则123422aaaa的值为()A.14B.12C.18D.15、等比数列{an}中,公比q=21且a2+a4+…+a100=30,则a1+a2+…+a100=______________.考点四:等比数列及其前n项和性质的应用1、在等比数列na中,如果66a,99a,那么3a为()A.4B.32C.169D.22、如果1,a,b,c,9成等比数列,那么()A.3b,9acB.3b,9acC.3b,9acD.3b,9ac3、在等比数列na中,11a,103a,则23456789aaaaaaaa等于()A.81B.52727C.3D.2434、在等比数列na中,9100aaaa,1920aab,则99100aa等于()A.98baB.9baC.109baD.10ba5、在等比数列na中,3a和5a是二次方程250xkx的两个根,则246aaa的值为()A.25B.55C.55D.556、若na是等比数列,且0na,若243546225aaaaaa,那么35aa的值等于考点五:公式11,(1),(2)nnnSnaSSn的应用1、若数列的前n项和Sn=a1+a2+…+an,满足条件log2Sn=n,那么{an}是()A.公比为2的等比数列B.公比为21的等比数列C.公差为2的等差数列D.既不是等差数列也不是等比数列2、等比数列前n项和Sn=2n-1,则前n项的平方和为()A.(2n-1)2B.31(2n-1)2C.4n-1D.31(4n-1)3、设等比数列{an}的前n项和为Sn=3n+r,那么r的值为______________.4、设数列{an}的前n项和为Sn且S1=3,若对任意的n∈N*都有Sn=2an-3n.(1)求数列{an}的首项及递推关系式an+1=f(an);(2)求{an}的通项公式;(3)求数列{an}的前n项和Sn.
本文标题:(完整版)等比数列知识点总结
链接地址:https://www.777doc.com/doc-7179373 .html