您好,欢迎访问三七文档
锂电池与锂离子电池孙睿敏2012/11/20Companyname锂离子电池工作原理第一部分锂电池的介绍基础介绍分类优点缺点锂电池的介绍锂电池是用金属锂作负极活性物质的电池的总称。Li-I2、Li-Ag2CrO4、Li-(FCX)n、Li-MnO2、Li-SO2和Li-SOCl2六种锂电池现已商品化。锂电池广泛应用于医疗、电子、通讯、航空和军事等领域。各种型号的锂电池锂电池的分类(1)按照电池的可充性:分为一次电池和二次电池;(2)按工作温度:分为室温、中温和高温电池,但无严格温度界限;(3)按照电解质分为:液体电解质,固体电解质和熔融电解质锂电池等;(4)按电极活性物质种类:分为锂电池和锂离子电池。通常按电解质性质分类。123比能量高,是普通锌锰电池的2~5倍;锂电池的优点电池电压高达3.9V并且放电电压平稳;比功率大,并且可以大电流放电;锂电池缺点(1)锂枝晶生长明显,金属锂电极表面不均匀,充电时造成锂沉积不均匀,枝晶脱落或折断时,产生“死锂”,造成锂的不可逆,降低活性材料的利用率;尖锐枝晶会穿透隔膜,使正负极短路发生自放电,同时产生大量热,使电池着火,甚至爆炸。(2)锂的活性高,很容易与电解质溶液发生反应,产生高压,造成危险。(3)高温下容易发生爆炸。(4)高氯酸锂等电解质和隔膜分解也是电池爆炸的因素。第二部分锂电池的工作原理锂电池工作原理负极反应:LiLi++e-锂电池正极反应有两种情况:一种是放电时,作为正极活性物质的卤化物、硫化物、氧化物、含氧酸盐及单质元素等还原成低价金属离子或元素,形成新的物相。如:正极反应:AgCl+e-Ag+Cl-CuS正极分步还原反应:CuS+e-1/2Cu2S+1/2S2-1/2Cu2S+e-Cu+1/2S2-另一种正极反应是还原后不出现新相。这类活性物质具有层状或隧道式晶体结构。来自负极的电子进入晶格内,使晶体中的某一金属离子还原,但晶体结构不发生变化。如:正极反应:MnO2+Li++e-LiMnO2TiS2+Li++e-LiTiS2C-SCompositeCathodeMaterialsMixturebeforeheatingMixtureafterheatingAfterheating,themeltisimbibedintothechannelsbycapillaryforces,whereuponitsolidifiesandshrinkstoformsulphurnanofibresthatareinintimatecontactwiththeconductivecarbonwalls.0.1C0.1CTheScontentof69.3wt%.C-SCompositeCathodeMaterialsa,b,SEMimagesofCMK-3/S-155before(a)andafter(b)the15thcharge.c,d,SEMimagesofPEG-modifiedCMK-3/Sbefore(c)andafter(d)the15thcharge.Imagesshowtheeffectsof“polymerprotection”ininhibitingsurfacedeposition.0.1CThePEG-CMK-3/Scompositeexhibitverylittlechangeinsurfacemorphology2.PEG-CMK-3/STheeffectofthePEG-functionalizedsurfaceistwofold.First,itservestotrapthepolysulphidespeciesbyprovidingahighlyhydrophilicsurfacechemicalgradientthatpreferentiallysolubilizestheminrelationtotheelectrolyte.Second,bylimitingtheconcentrationofthepolysulphideanionsintheelectrolyte,theredoxshuttlemechanismiscurtailedtoalargedegree.C-SCompositeCathodeMaterialsPEG-CMK3/SCMK3/SAB/S▲CMK3/SPEG-CMK3/SThereleaseofthePEGtetheredtotheCMK-3occursat50oChigherthaninPEGitselfowingtotheesterbondsC-SCompositeCathodeMaterials3.MicroporescarbonspheresB.ZhangX.QinG.R.LiaandX.P.Gao;Energy&EnvironmentalScience10.1039/c002639eTEMimagesofcarbonspheres(aandb)andthesulfur–carbonspherecompositewith42wt%sulfur(c),andHAADF-STEMimage(d)BETMicroporesC843.5m2g-1C-S(42%)6.5m2g-1C-SCompositeCathodeMaterialsBecausethetheoreticalloadingis49.5wt%sulfurbasedonthetotalporevolumeofcarbonspheres(0.474cm3g-1)andthedensityofelementalsulfur(2.07gcm-3forthealphaphase,atroomtemperature)40mAg-1C-SCompositeCathodeMaterials0.1mVs-142wt%S400mAg-1400mAg-1Thelowpotentialplateauwiththesulfurembeddedthenarrowporesofcarbonsphereslieswithinthefactthattheelectrochemicalreactionduringthedischargeprocessneedstoovercometheabsorbingenergy,leadingtosuchadischargepotentialhysteresis.Thesmallcathodicpeakpotentialat2.4V(vs.Li+/Li)disappearscompletelyafterthefirstcyclebecauseofthedissolutionofatraceofsulfuronthecarbonspheresurfaceinelectrolyte,furtherconfirmingthatsulfurisalmostloadedinsidethemicroporesofcarbonspheresConclusion1.ForLi-Sbatteries,cathodeshouldbeconductiveandcantraptheSinside.2.Enoughroomforvolumetricexpansion.3.Themesoporous/microporouscarboncansatisfyboth.Graphene-WrappedSulfurParticlesHailiangWang,†,§YuanYang,‡,§,Graphene-WrappedSulfurParticlesasaRechargeableLithiumSulfurBatteryCathodeMaterialwithHighCapacityandCyclingStability.NanoLett.2011,11,2644–2647Figure3.Energydispersivespectroscopic(EDS)characteriz-ationofgraphenesulfurcomposite.Azoom-inSEMimage(Figure2b)showedgraphenesheetscoatedaroundasulfurparticle.Figure2.SEMcharacterizationofgraphenesulfurcompositeatlow(a)andhigh(b)magnifications.ChemicalmappingconfirmedthatthebrightparticlesintheSEMimage(Figure3a)weresulfur(Figure3c,sulfurmapping),withoverlayingCsignalsduetomGOcoatingonthesulfurparticles(Figure3d,carbonmapping).Graphene-WrappedSulfurParticlesElectrochemicalcharacterization(a)10thcyclechargeanddischargevoltageprofilesofthegraphenesulfurcompositewithPEGcoatingatvariousrates.(b)Cyclingperformanceofthesamecompositeasin(a)atratesof∼C/5and∼C/2.(c)CyclingperformanceofPEGcoatedsulfurwithoutgraphenecoatingattherateof∼C/5.(d)CyclingperformanceofgraphenecoatedsulfurwithoutanysurfactantPEGcoatingattherateof∼C/5.highperformanceofthesulfurgraphenecompositecathodematerial.thegrapheneandPEGcoatinglayersonsulfurparticlestwoimportantfactorstotheobservedcyclingstabilityofsulfurparticles.RGO–TG–SnanocompositeBoththefunctionalgroupandsp2-hybridizedcarbonoftheRGOandTGhavestrongchemicalinteractionswithsulfur.largespecificsurfacearea,Highporevolume,ExcellentconductivityBroadporedistributiontheTG(thermallyexfoliatedgraphenenanosheet)andRGOcoatingeffectivelyconfinedthesulfurandpolysulfidesinthecarbonframework.TheRGOcoatinglayereffectivelyrestrainstheshuttlingloss.Fig.3(a)Typicalvoltagecapacityprofilesand(b)cyclelifeoftheTG–SandRGO–TG–Snanocompositesatarateof0.2Ag-1.Fig.4(a)TypicalvoltagecapacityprofilesoftheRGO–TG–Snanocompositeatvariousrates.(b)5)RatecapabilityoftheRGO–TG–Snanocomposite.(c)CyclelifeandcoulombicefficiencyoftheRGO–TG–Snanocompositeatahighcurrentdens
本文标题:锂硫电池
链接地址:https://www.777doc.com/doc-7186247 .html