您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 初一上期数学复习资料
初一上期数学复习资料第一章:有理数知识要求:1、有具体情境中,理解有理数及其运算的意义;2、能用数轴上的点表示有理数,会比较有理数的大小。3、借助数轴理解相反数与绝对值的意义,会求有理数的相反数与绝对值。4、经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能利用运算律简化运算,及能运用有理数及其运算律解决简单的实际问题。知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。知识点:一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。2、有理数的分类:(1)按定义分类:(2)按性质符号分类:负分数正分数分数负整数正整数整数有理数0负分数负整数负有理数正分数正整数正有理数有理数03、数轴数轴有三要素:原点、正方向、单位长度。画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:)0()0(0)0(aaaaaa(3)两个负数比较大小,绝对值大的反而小。二、有理数的运算1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。(2)有理数加法的运算律:加法的交换律:a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数。(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac。(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。5、有理数的乘法(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“na”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂。(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序。比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算。(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力。练习:一、选择题:1、下列说法正确的是()A、非负有理数即是正有理数B、0表示不存在,无实际意义C、正整数和负整数统称为整数D、整数和分数统称为有理数2、下列说法正确的是()A、互为相反数的两个数一定不相等B、互为倒数的两个数一定不相等C、互为相反数的两个数的绝对值相等D、互为倒数的两个数的绝对值相等3、绝对值最小的数是()A、1B、0C、–1D、不存在4、计算)2(244所得的结果是()A、0B、32C、32D、165、有理数中倒数等于它本身的数一定是()A、1B、0C、-1D、±16、(–3)–(–4)+7的计算结果是()A、0B、8C、–14D、–87、(–2)的相反数的倒数是()A、21B、21C、2D、–28、化简:42a,则a是()A、2B、–2C、2或–2D、以上都不对9、若21yx,则yx=()A、–1B、1C、0D、310、有理数a,b如图所示位置,则正确的是()A、a+b0B、ab0C、b-a0D、|a||b|二、填空题11、(–5)+(–6)=________;(–5)–(–6)=_________。12、(–5)×(–6)=_______;(–5)÷6=___________。13、2122_________;21244=________。14、27132__________;9132________。15、20032002)1(1_________;16、平方等于64的数是___________;__________的立方等于–6417、75与它的倒数的积为__________。18、若a、b互为相反数,c、d互为倒数,m的绝对值是2,则a+b=_______;cd=______;m=__________。19、如果a的相反数是–5,则a=_____,|a|=______,|–a–3|=________。20、若|a|=4,|b|=6,且ab0,则|a-b|=__________。三、计算:(1)22)5()25(848(2)145)2(535213(3))2(3)3(322(4))32()4(824(5))3()6()2(16323(6)95)31(53.1四、某工厂计划每天生产彩电100台,但实际上一星期的产量如下所示:星期一二三四五六日增减/辆–1+3–2+4+7–5–10比计划的100台多的记为正数,比计划中的100台少的记为负数;请算出本星期的总产量是多少台?本星期那天的产量最多,那一天的产量最少?五、某工厂在上一星期的星期日生产了100台彩电,下表是本星期的生产情况:星期一二三四五六日增减/辆–1+3–2+4+7–5–10比前一天的产量多的计为正数,比前一天产量少的记为负数;请算出本星期最后一天星期日的产量是多少?本星期的总产量是多少?那一天的产量最多?那一天的产量最少?第二章:代数式知识要求:1、经历探索事物之间的数量关系,并用字母与代数式表示,初步建立符号感,发展抽像思维;2、在具体情境中进一步理解用字母表示数的含义,能分析简单问题的数量关系,并用代数式;3、理解代数式的含义,能解释简单代数式的实际背景或几何意义,体会数学与现实世界的联系;4、理解合并同类项和去括号的法则,并会进行计算;5、会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律。知识重点:代数式的概念和意义,用代数式表示简单的数量关系,同类项的定义及去括号的方法都是本章的重点。知识难点:会列代数式,正确阐述代数式的意义,熟练掌握同类项合并是本章的难点。考点:列代数式、代数式的意义,准确地去括号、合并同类项是考试的重点。知识点:一、代数式的概念1、用字母表示数之后,可能用字母表示的有:(1)具有一定数量的数;(2)一些变化的规律;(3)数的运算法则和运算定律;(4)数量关系;(5)数学公式。2、用字母表示数的意义:用字母表示数是代数的一个重要特点,它的优点在于能简明、扼要、准确地把数和数之间的关系表示出来,化特殊为一般,深刻地揭示数量之间的联系,为我们学习数学和应用数学带来方便。3、用字母表示数学公式:(1)加法、乘法的运算律;(2)平面图形的面积公式;(3)平面图形的周长公式;(4)立体图形的体积公式。4、代数式的概念:用字母表示数之后,出现了一些用运算符号把数和表示数的字母连接起来的式子,我们把它们叫做代数式。单个的数字和字母也可以看成是代数式。运算符号指的是加、减、乘、除、乘方、绝对值,大中小括号以及以后要学到的开方符号,但不包括大于、小于号、等号等表示数量关系的关系符号。5、代数式的书写:(1)数字与字母、字母与字母相乘时,乘号可以省略不写或用“·”代替,省略乘号时,数字因数应写在字母因数的前面,数字是带分数时要改写成假分数,数字与数字相乘时仍要写“×”号。(2)代数式中出现除法运算时,一般要写成分数的形式。(3)用代数式表示某一个量时,代数式后面带有单位,如果代数式是和、差形式,要用括号把代数式括起来。6、代数式的意义:用语言把一个代数式的数学意义表示出来时,要正确表达式中所含有代数运算以及它们运算顺序,还要注意语言的简练准确。二、代数式的计算1、同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项。判断同类项的标准有两条:(1)所含字母相同;(2)相同字母的指数也分别相同。2、合并同类项:把多项式中的同类项合并成一项叫做合并同类项,不是同类项不能合并。合并同类项法则:(1)系数相加,所得结果作为系数;(2)字母和字母的指数不变。3、去括号:去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项符号都不改变;(2)括号前是“–”号,把括号和它前面的“–”号去掉后,原括号里各项的符号都要改变。4、代数式的值:用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,叫代数式的值。求代数式的值要注意的问题:(1)字母的数值必须确保代数式有意义;(2)在代入数值计算之前要把代数式化到最简;(3)字母的取值保证它本身表示的数量有意义;(4)字母的取值不同,代数式的值也不同。三、探索规律1、探索数量关系,运用符号表示规律,通过运算验证规律2、用代数式表示简单问题中的数量关系,运用合并同类项,去括号等法则验证所探索的规律。练习题:一、选择题:1、下列各式中不是代数式的是()A、πB、0C、yx1D、a+b=b+a2、用代数式表示比y的2倍少1的数,正确的是()A、2(y–1)B、2y+1C、2y–1D、1–2y3、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降价20%,现售价为n元,那么该电脑的原售价为()A、元)54(mnB、元)45(mnC、元)5(nmD、元)5(mn4、当61,31ba时,代数式2)(ba的值是()A、121B、61C、41D、3615、已知公式nmp111,若m=5,n=3,则p的值是()A、8B、81C、158D、8156、下列各式中,是同类项的是()A、2233xyyx与B、yxxy23与C、xx222与D、yzxy55与二、填空题:7、某商品利润是a元,利润率是20%,此商品进价是______________。8、代数式cba2
本文标题:初一上期数学复习资料
链接地址:https://www.777doc.com/doc-7202592 .html