您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 扫描电子显微镜图像分析
PicturesofSEM注射针头的扫描电镜照片PicturesofSEM果蝇:不同倍率的扫描电镜照片OpticalMicroscopeVSSEMOM:景深小分辨率:200nmSEM:景深大分辨率:1nm第八章扫描电子显微镜引言扫描电镜结构原理扫描电镜图象及衬度扫描电镜结果分析示例扫描电镜的主要特点扫描电子显微镜的简称为扫描电镜,英文缩写为SEM(ScanningElectronMicroscope)。SEM与电子探针(EPMA)的功能和结构基本相同,但SEM一般不带波谱仪(WDS)。它是用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的二次电子、背散射电子等对样品表面或断口形貌进行观察和分析。现在SEM都与能谱(EDS)组合,可以进行成分分析。所以,SEM也是显微结构分析的主要仪器,已广泛用于材料、冶金、矿物、生物学等领域。引言HistoryofSEM1935:法国的卡诺尔提出扫描电镜的设计思想和工作原理。1942:剑桥大学的马伦首次制成世界第一台扫描电镜。扫描电子显微镜图日本电子株式会社JSM-6390LV钨灯丝扫描电镜扫描电子显微镜图日本日立集团S-3400N扫描电子显微镜JSM-6700F场发射扫描电镜扫描电子显微镜图扫描电镜的优点高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右;有较高的放大倍数,20-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;试样制备简单;配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析。FeaturesofSEM高分辨率FeaturesofSEM强立体感FeaturesofSEM广泛的放大倍率(果蝇)FeaturesofSEM应用范围广●扫描电镜结构原理1.扫描电镜的工作原理扫描电镜的工作原理与闭路电视系统相似。可以简单地归纳为“光栅扫描,逐点成像”。由三极电子枪发射出来的电子束,在加速电压作用下,经过2~3个电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品产生各种物理信号,如二次电子、背散射电子、吸收电子、X射线、俄歇电子等。这些物理信号的强度随样品表面特征而变。1.扫描电镜的工作原理它们分别被相应的收集器接受,经放大器按顺序、成比例地放大后,送到显像管的栅极上,用来同步地调制显像管的电子束强度,即显像管荧光屏上的亮度。由于供给电子光学系统使电子束偏向的扫描线圈的电源也就是供给阴极射线显像管的扫描线圈的电源,此电源发出的锯齿波信号同时控制两束电子束作同步扫描。因此,样品上电子束的位置与显像管荧光屏上电子束的位置是一一对应的。这样,在荧光屏上就形成一幅与样品表面特征相对应的画面——某种信息图,如二次电子像、背散射电子像等。画面上亮度的疏密程度表示该信息的强弱分布。1.扫描电镜的工作原理扫描电镜成像示意图扫描电镜成像示意图二次电子入射电子与样品相互作用后,使样品原子较外层电子(价带或导带电子)电离产生的电子,称二次电子。二次电子能量比较低,习惯上把能量小于50eV电子统称为二次电子,仅在样品表面5nm-10nm的深度内才能逸出表面,这是二次电子分辨率高的重要原因之一。SEM中的成像信号背散射电子背散射电子是指入射电子与样品相互作用(弹性和非弹性散射)之后,再次逸出样品表面的高能电子。其能量接近于入射电子能量(能量高)。背射电子的产额随样品的原子序数增大而增加,所以背散射电子信号的强度与样品的化学组成有关,即与组成样品的各元素平均原子序数有关。SEM中的成像信号各种信号的深度和区域大小可以产生信号的区域称为有效作用区,有效作用区的最深处为电子有效作用深度。但在有效作用区内的信号并不一定都能逸出材料表面、成为有效的可供采集的信号。这是因为各种信号的能量不同,样品对不同信号的吸收和散射也不同。随着信号的有效作用深度增加,作用区的范围增加,信号产生的空间范围也增加,这对于信号的空间分辨率是不利的。主要包括有电子光学系统、扫描系统、信号检测放大系统、图象显示和记录系统、电源和真空系统等。透射电镜一般是电子光学系统(照明系统)、成像放大系统、电源和真空系统三大部分组成。比较2、扫描电镜的主要结构电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。电子枪的作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。电子枪几种类型电子枪性能比较信号收集及显示系统检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。普遍使用的是电子检测器,它由闪烁体,光导管和光电倍增器所组成。真空系统和电源系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染提供高的真空度,一般情况下要求保持10-4-10-5Torr的真空度。电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。3.扫描电镜衬度像二次电子像背散射电子像衬度:明暗程度人体红细胞的SEM照片衬度:试样表面微区特征的差异(1)二次电子像二次电子像是表面形貌衬度,它是利用对样品表面形貌变化敏感的物理信号作为调节信号得到的一种象衬度。因为二次电子信号主要来处样品表层5~10nm的深度范围,它的强度与原子序数没有明确的关系,便对微区表面相对于入射电子束的方向却十分敏感,二次电子像分辨率比较高,所以适用于显示形貌衬度。注意在扫描电镜中,二次电子检测器一般是装在入射电子束轴线垂直的方向上二次电子产额δ与二次电子束与试样表面法向夹角有关,δ∝K/cosθK为常数,θ为入射电子与样品表面法线之间的夹角。θ角越大,二次电子产额越高,这表明二次电子对样品表面状态非常敏感。因为随着θ角增大,入射电子束作用体积更靠近表面层,作用体积内产生的大量自由电子离开表层的机会增多;其次随θ角的增加,总轨迹增长,引起价电子电离的机会增多。(1)二次电子像形貌衬度原理(2)背散射电子像背散射电子既可以用来显示形貌衬度,也可以用来显示成分衬度。a.形貌衬度用背反射信号进行形貌分析时,其分辨率元比二次电子低。因为背反射电子时来自一个较大的作用体积。此外,背反射电子能量较高,它们以直线轨迹逸出样品表面,对于背向检测器的样品表面,因检测器无法收集到背反射电子,而掩盖了许多有用的细节。b.成分衬度背散射电子发射系数可表示为样品中重元素区域在图像上是亮区,而轻元素在图像上是暗区。利用原子序数造成的衬度变化可以对各种合金进行定性分析。背反射电子信号强度要比二次电子低的多,所以粗糙表面的原子序数衬度往往被形貌衬度所掩盖。416lnz(2)背散射电子像背散射电子像的形成,就是因为样品表面上平均原子序数Z大的部位而形成较亮的区域,产生较强的背散射电子信号;而平均原子序数较低的部位则产生较少的背散射电子,在荧光屏上或照片上就是较暗的区域,这样就形成原子序数衬度。(2)背散射电子像背散射电子探头采集的成分像(a)和形貌像(b)两种图像的对比锡铅镀层的表面图像(a)二次电子图像(b)背散射电子图像(a)(b)二次电子像和背散射电子像对比二次电子像分辨率高,立体感强,主要反映形貌特征背散射电子像分辨率低,立体感差,但既能反映形貌特征,又能定性探测元素分布。扫描电镜在材料研究中的应用1、表面形貌衬度及其应用(1)断口分析材料断口的微观形貌往往与其化学成分、显微组织、制造工艺及服役条件存在密切联系,所以断口形貌的确定对分析断裂原因常常具有决定性作用。①韧窝断口②解理断口及准解理断口③沿晶断口④疲劳断口⑤应力腐蚀开裂断口(a)沿晶断裂(b)解理断口(c)准解理断口(d)韧窝断口扫描电镜在材料研究中的应用(2)高倍金相组织观察和分析在多相结构材料中,特别是在某些共晶材料和复合材料的显微组织和分析方面,由于可以猎助于扫描电镜景深大的特点,所以完全可以采用深浸蚀的方法,把基体相溶去一定的深度,使得欲观察和研究的相显露出来,这样就可以在扫描电镜下观察到该相的三维立体的形态,这是光学显微镜和透射电镜无法做到的。扫描电镜在材料研究中的应用(3)断裂过程的动态研究有的型号的扫描电镜带有较大拉力的拉伸台装置,这就为研究断裂过程的动态过程提供了很大的方便。在试样拉伸的同时既可以直接观察裂纹的萌生及扩展与材料显微组织之间的关系,又可以连续记录下来,为科学研究提供最直接的证据。扫描电镜在材料研究中的应用2、原子序数衬度及其应用原子序数衬度是利用对样品微区原子序数或化学成分变化敏感的物理信号作为调制信号得到的、表示微区化学成分差别的像衬度。背散射电子、吸收电子和特征X射线等信号对微区原子序数或化学成分的变化敏感,所以可用来显示原子序数或化学成分的差别。背散射电子产额随样品中元素原子序数的增大而增加,因而样品上原子序数较高的区域产生较强的信号,在背散射电子像上显示较高的衬度,这样就可以根据背散射电子像亮暗衬度来判断相应区域原子序数的相对高低,对金属及其合金进行显微组织分析。锡铅镀层的表面图像(背散射电子图像)扫描电镜结果分析示例β—Al2O3试样高体积密度与低体积密度的形貌像2200×抛光面断口分析典型的功能陶瓷沿晶断口的二次电子像,断裂均沿晶界发生,有晶粒拔出现象,晶粒表面光滑,还可以看到明显的晶界相。粉体形貌观察α—Al203团聚体(a)和团聚体内部的一次粒子结构形态(b)(a)300×(b)6000×钛酸铋钠粉体的六面体形貌20000×扫描电镜的主要性能与特点放大倍率高分辨率高景深大保真度好样品制备简单放大倍率高从几十放大到几十万倍,连续可调。放大倍率不是越大越好,要根据有效放大倍率和分析样品的需要进行选择。如果放大倍率为M,人眼分辨率为0.2mm,仪器分辨率为5nm,则有效放大率M=0.2106nm5nm=40000(倍)。如果选择高于40000倍的放大倍率,不会增加图像细节,只是虚放,一般无实际意义。放大倍率是由分辨率制约,不能盲目看仪器放大倍率指标。分辨率高分辨率指能分辨的两点之间的最小距离。分辨率d可以用贝克公式表示:d=0.61/nsin,为透镜孔径半角,为照明样品的光波长,n为透镜与样品间介质折射率。对光学显微镜=70-75,n=1.4。因为nsin1.4,而可见光波长范围为:=400nm-700nm,所以光学显微镜分辨率d0.5,显然d200nm。要提高分辨率可以通过减小照明波长来实现。SEM是用电子束照射样品,电子束是一种DeBroglie波,具有波粒二相性,=12.26/V0.5(伏),如果V=20kV时,则=0.0085nm。目前用W灯丝的SEM,分辨率已达到3nm-6nm,场发射源SEM分辨率可达到1nm。高分辨率的电子束直径要小,分辨率与电子束直径近似相等。景深D大景深大的图像立体感强,对粗糙不平的断口样品观察需要大景深的SEM。SEM的景深Δf可以用如下公式表示:Δf=aDdM)2.0(式中D为工作距离,a为物镜光阑孔径,M为放大倍率,d为电子束直径。可以看出,长工作距离、小物镜光阑、低放大倍率能得到大景深图像。一般情况下,SEM景深比TEM大10倍,比光学显微镜(OM)大100倍。多孔SiC陶瓷的二次电子像保真度好样品通常不需要作任何处理即可以直接进行观察,所以不会由于制样原因而产生假象。这对断口的失效分析特别重要。样品制备简单扫描电镜的最大优点是样品制备方法简单,对金属和陶瓷等块状样品,只需将它们切割成大小合适的尺寸,用导电胶将其粘接在电镜的样品座上即可直接进行观察。对于非导电样品如塑料、矿物等,在电子束作用下会产生电荷堆积,影响入射电子束斑和样品发射的二次电子运动轨迹,使图像质量下降。因此这类试样在观察前要喷镀导电层进行处理,通常采用二次电子发射系数较高的金银或碳膜做导电层,膜厚控制在20nm左右。SEM和TEM的区别透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用
本文标题:扫描电子显微镜图像分析
链接地址:https://www.777doc.com/doc-7203005 .html