您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 4、角边角、角角边(ASA.AAS)
11.3全等三角形的判定“边角边”或“SAS”1.什么是全等三角形?2.判定两个三角形全等要具备什么条件?复习三边对应相等的两个三角形全等。边边边:边角边:有两边和它们夹角对应相等的两个三角形全等。能够完全重合的两个三角形一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗?怎么办?可以帮帮我吗?创设情景,实例引入先任意画出一个△ABC,再画一个△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B。把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?探究1画法:2、在A/B/的同旁画∠DA/B/=∠A,∠EB/A/=∠B,A/D,B/E交于点C/。1、画A/B/=AB;△A/B/C/就是所要画的三角形。问:通过实验可以发现什么事实?ABCDE有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。探究反映的规律是:CDA'ABE∠A=∠A'(已知)AB=A'C(已知)∠B=∠C(已知)证明:在△ABE和△A'CD中∴△ABE≌△A'CD(ASA)用数学符号表示如图:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?探究2ABCDEF证明:∵∠A+∠B+∠C=180o∠D+∠E+∠F=180o∴∠C=∠F又∵∠A=∠D,∠B=∠E在△ABC和△DEF中∠B=∠E∠C=∠FBC=EF∴△ABC≌△DEF(ASA)有两个角和其中一个角的对边对应相等的两个三角形是否全等?教材例2有两个角和其中一个角的对边对应相等的两个三角形全等。(简写成“角角边”或“AAS”)ABCDEF用符号语言表达为:∴△ABC≌△DEF(AAS)∠A=∠DBC=EF∠B=∠E证明:在△ABC和△DEF中例题讲解:例1.已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C。求证:AD=AE证明:在△ADC和△AEB中∠A=∠A(公共角)AC=AB(已知)∠C=∠B(已知)∴△ACD≌△ABE(ASA)∴AD=AE(全等△的对应边相等)AEDCBO思考2.如果把已知中的AB=AC改成AD=AE,那么BD和CE还相等么?1.你还能得到什么结论?例2.如图,∠1=∠2,∠3=∠4求证:AC=AD如果把已知中的∠3=∠4改成,∠D=∠C此题又如何?变式已知,如∠1=∠2,∠C=∠D求证:AC=AD证明:∵∠3=∠4∴∠ABC=∠ABD在△ABC与△ABD中∠1=∠2∠ABC=∠ABDAB=AB∴△ABC≌△ABD(ASA)∴AC=ADOACDBAO=BO如图,AB、CD相交于点O,已知∠A=∠B添加条件(填一个即可)就有△AOC≌△BOD还有吗?填一填如图,AB∥CD,AD∥BC,那么AB=CD吗?为什么?AD与BC呢?ABCD1234∴AB=CDBC=AD(全等三角形对应边相等)做一做用数字标出角书写证明时方便证明:连接AC∵AB∥CD,AD∥BC(已知)∴∠1=∠2∠3=∠4在△ABC与△CDA中∠1=∠2(已证)AC=AC(公共边)∠3=∠4(已证)∴△ABC≌△CDA(ASA)(1)学习了角边角、角角边(2)注意角角边、角边角中两角与边的区别。(3)会根据已知两角一边画三角形(4)进一步学会用推理证明。(5)证明线段或角相等,就是证明它们所在的两个三角形全等。布置作业P41练习第1、2题P43-45习题12.2第5、6题
本文标题:4、角边角、角角边(ASA.AAS)
链接地址:https://www.777doc.com/doc-7204081 .html