您好,欢迎访问三七文档
利用优化技术提高汽车发动机综合性能一、前言20世纪90年代以来,汽车行业的竞争已从单一的性能竞争转向性能、环保、节能等多元综合竞争。仅就汽车发动机而言,为应对世界能源危机和减少对环境污染,其研究开发工作已侧重于降低油耗、减少排放、轻质及减少磨损等方面,在这些研究中优化技术将得到广泛的应用。二、发动机优化技术研究和应用现状目前各类发动机研发工作的共同重点包括降低油耗、减少排放、减轻质量以及减少磨损等,为了达到这些目标,在发动机设计中应用优化技术是一个重要的手段。当前发动机的优化工作主要在发动机结构、材料、燃料及燃烧、排放以及多学科优化等几个方面展开。(一)发动机结构及材料优化技术发动机结构优化主要是优化关键零部件的形状以改善发动机性能,此方面的研究有:将BP神经网络和遗传算法相结合用于航空发动机的结构优化以获得最优的推重比;通过优化固体火箭发动机的结构以获得最轻的结构质量和最大的装填密度;总结了国内外对航空发动机叶片-轮盘结构优化设计的研究现状,提出了一种将动态分析与结构形状优化设计相结合的新方法;为改进发动机结构及使发动机轻量化,对其材料进行优化设计是一种重要手段。近年来,包括新型复合材料如碳化硅、氮化硅、氧化锆、石墨及合成石墨等不断用于发动机结构。通过建立发动机复合材料叶片各截面应力应变解析式和最大应力准则,对叶片进行最大强度的优化分析。对固体火箭发动机的复合材料壳体进行优化设计,使得发动机结构在满足强度约束的要求下获得最小的质量。(二)发动机燃烧优化技术随着世界能源问题和环境污染问题的日趋严重,飞机及汽车作为污染环境和消耗能源的大户,备受人们的关注。发动机燃烧过程直接影响节能和环保,对发动机燃烧过程优化的研究越来越受到重视。目前主要是从喷射系统、进气管系、燃烧室形状等几方面对其进行优化设计。在发动机燃烧喷射系统方面,借助于先进电子控制技术,能准确地调节燃油供给,优化喷油定时和喷油次数,控制气缸内的混合状态、燃烧室内的燃油分布,降低排放污染。对新型脉动式电控燃油喷射系统的喷射定时问题,研究了发动机直接喷射技术的优化问题。采用了多目标设计方法,优化了发动机燃烧系统和配气机构匹配。在新型燃料发动机燃烧过程的优化研究中,在建立氢燃料发动机最优控制模型的基础上,提出了双模式控制方式;用计算机仿真分析手段对天然气汽车发动机的空燃比进行优化来改善发动机的性能。(三)发动机多学科优化技术发动机设计以结构、热力、燃烧、强度、振动、流体、传热等多个学科为基础,可变因素多,随机性大,是一个可变互耦系统的优化问题。三、发动机多学科多目标优化技术的研究内容(一)多目标优化发动机的优化涉及到多个目标,与单目标优化问题不同的是这些目标函数往往耦合在一起,且每一个目标具有不同的物理意义和量纲。它们的关联性和冲突性使得对其优化变得十分困难。多目标优化方法可以分为如下两大类并且已在发动机的优化设计中得到了应用。1.基于偏好的多目标优化方法此方法根据工程实际的具体情况,首先选择一个偏好向量,然后利用偏好向量构造复合函数,使用单目标优化算法优化该复合函数以找到单个协议最优解。2.基于非劣解集的多目标优化方法此方法首先需要找到尽可能多的协议解,然后根据工程实际情况,获得决策解。相比基于偏好的多目标方法,该方法更系统、实用和客观。(二)不确定性优化在发动机的生产及实际使用中,总是存在着材料特性、制造、装配及载荷等方面的误差或不确定性。虽然在多数情况中,误差或不确定性很小,但这些误差或不确定性结合在一起可能对发动机的性能和可靠性产生很大的影响。对于此类不确定性问题的优化,传统的优化方法已无法解决,而必须求助于不确定性优化方法。1.随机不确定性优化随机不确定优化方法中,随机变量或随机函数被用于描述不确定性,用概率论和数理统计的方法将不确定优化问题转化为确定性优化问题进行求解。随机不确定优化的研究较为成熟,并开始应用于发动机的设计中。2.模糊不确定性优化模糊不确定优化方法中,模糊变量被用于描述参数不确定性,模糊统计方法被用于研究不确定现象并将模糊优化问题转换为确定性优化问题进行求解。四、以节能和环保为主要目标的汽车发动机综合优化技术研究重点(一)汽车发动机优化设计方法1.汽车发动机多学科多目标优化设计系统在以节能、环保为主要目标的综合最优前提下,根据汽车发动机设计特点,通过系统分解工作,建立起汽车发动机的物理分析模型及优化数学模型;在上述工作基础上,比较、选择高效的多学科多目标优化方法;最终开发出汽车发动机多学科多目标优化设计系统。发动机总体优化设计的功能是使得发动机的耗油率最低,质量最小、功率与转矩最大,同时向各部件分配指标,并以总体与部件指标一致为约束条件;部件级优化设计以与总体级分配指标相差最小为目标函数,在满足部件级的约束条件下,向所属各零件分配指标;零件级优化设计以与部件级分配指标相差最小为目标函数,通过调整零件几何结构尺寸,使得零件级的各学科约束条件满足。通过以上三级优化,使得各零、部件与总体间设计达成一致协调,并找到综合最优的设计方案。(二)汽车发动机优化设计问题1.关键零部件结构优化汽车发动机的关键零部件如气缸、活塞、曲轴、连杆及涡轮增压器等的设计对发动机的性能有很大影响。这些零部件的优化设计,可以提高发动机的性能、寿命和可靠性,从而降低成本、提高经济性。对这些关键零部件的优化可采用前述的各种方法。但在优化过程中需反复多次调用求解模型,优化效率极低。未来对于此类零部件的优化会越来越依赖于近似模型的引入。可以通过响应面法、神经网络和缩减基法等近似模型建立目标场函数与设计参数之间的近似关系,并且开发相应的误差估计方法。另外,利用并行算法和其他高性能计算技术也是提高优化效率的一条途径。2.发动机整机减振优化随着发动机质量越来越轻,而其功率和转速不断提高,振动和噪声问题越来越突出。振动不仅影响到发动机自身的强度和性能,而且会给车辆整体寿命和乘客舒适性造成很大的影响。除了对发动机本身结构进行改进外,对发动机的减振系统进行优化也是一条提高车辆整体振动性能的有效途径。传统的弹性减振系统已无法满足舒适性要求,未来的趋势是半主动减振和主动减振控制系统,即能根据发动机激励、路况、车辆行驶状态和载荷等自动调节系统参数,优化车辆动力学特性,实现主动减振。3.燃烧与排放系统的优化发动机的燃烧和排放系统直接影响到发动机的燃油经济性、噪声、排放等重要指标,影响到汽车的节能与环保性能。对燃烧与排放系统的优化可从两个方面进行。一方面是燃料喷射系统的优化,可通过电控单元精确控制各气缸的燃油喷射量,自由控制发动机的转矩,使得发动机具有良好的启动性能和最佳的输出响应特性,并使得气缸达到最佳混合气状态,提高燃油热效率,降低噪声;另一方面是优化进气管系的结构参数,改进发动机燃烧室,优化压缩比。未来的燃烧与排放系统的设计,应当综合考虑喷射系统和发动机结构,同时注重结构、燃烧、流体、噪声等不同专业领域的性能提高,进行多学科优化设计。五、结论综上所述,优化技术在发动机的设计制造中占有非常重要的地位。包括常规优化方法和智能优化方法在内的优化技术已被应用于发动机设计。考虑到能源的短缺和环境问题的重要性,未来的车用发动机优化设计的研究将是以节能和环保为重点的综合最优,应当建立并应用多种不确定多目标多学科优化理论方法、策略及算法;并应大力开发在一个优化平台上集成各个学科设计要求的多学科多目标优化设计系统,该系统将具有更高的优化效率和较好的开放性,可以更好地适应未来汽车个性化设计的趋势。
本文标题:选修课汽车论文
链接地址:https://www.777doc.com/doc-7205206 .html