您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 经典二次函数应用题(含答案)
二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).(2)当x为何值时,S有最大值?并求出最大值.4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系502600yx,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:月份1月5月销售量3.9万台4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:345.831≈,355.916≈,376.083≈,386.164≈)5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数ykxb,且65x时,55y;75x时,45y.(1)求一次函数ykxb的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.(3)在(2)的基础上,设直线x=t(0t10)与抛物线交于点N,当t为何值时,△BCN的面积最大,并求出最大值.6、已知抛物线y=ax2+bx+c的顶点A(2,0),与y轴的交点为B(0,-1).(1)求抛物线的解析式;(2)在对称轴右侧的抛物线上找出一点C,使以BC为直径的圆经过抛物线的顶点A.并求出点C的坐标以及此时圆的圆心P点的坐标.yoCDx二次函数应用题答案1、解:(1)(130-100)×80=2400(元)(2)设应将售价定为x元,则销售利润130(100)(8020)5xyx24100060000xx24(125)2500x.当125x时,y有最大值2500.∴应将售价定为125元,最大销售利润是2500元.2、解:(1)(24002000)8450xyx,即2224320025yxx.(2)由题意,得22243200480025xx.整理,得2300200000xx.得12100200xx,.要使百姓得到实惠,取200x.所以,每台冰箱应降价200元.(3)对于2224320025yxx,当241502225x时,150(24002000150)8425020500050y最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.3、4、解:(1)设p与x的函数关系为(0)pkxbk,根据题意,得3.954.3.kbkb,解得0.13.8.kb,所以,0.13.8px.设月销售金额为w万元,则(0.13.8)(502600)wpyxx.化简,得25709800wxx,所以,25(7)10125wx.当7x时,w取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元.(2)去年12月份每台的售价为501226002000(元),去年12月份的销售量为0.1123.85(万台),根据题意,得2000(1%)[5(11.5%)1.5]13%3936mm.令%mt,原方程可化为27.5145.30tt.214(14)47.55.3143727.515t.10.528t≈,21.339t≈(舍去)答:m的值约为52.8.5、解:(1)根据题意得65557545.kbkb,解得1120kb,.所求一次函数的表达式为120yx.(2)(60)(120)Wxx21807200xx2(90)900x,抛物线的开口向下,当90x时,W随x的增大而增大,而6087x≤≤,当87x时,2(8790)900891W.当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由500W,得25001807200xx,整理得,218077000xx,解得,1270110xx,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x≤≤,所以,销售单价x的范围是7087x≤≤.
本文标题:经典二次函数应用题(含答案)
链接地址:https://www.777doc.com/doc-7209692 .html