您好,欢迎访问三七文档
2.3.1双曲线及其标准方程教学目标:1.知识与技能掌握双曲线的定义,标准方程,并会根据已知条件求双曲线的标准方程.2.过程与方法教材通过具体实例类比椭圆的定义,引出双曲线的定义,通过类比推导出双曲线的标准方程.3.情感、态度与价值观通过本节课的学习,可以培养我们类比推理的能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力.教学重点:双曲线的定义、标准方程及其简单应用教学难点:双曲线标准方程的推导授课类型:新授课教具:多媒体、实物投影仪教学过程:一.情境设置1.复习提问:(由一位学生口答,教师利用多媒体投影)问题1:椭圆的定义是什么?问题2:椭圆的标准方程是怎样的?问题3:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程又是怎样的呢?2.探究新知:(1)演示:引导学生用《几何画板》作出双曲线的图象,并利用课件进行双曲线的模拟实验,思考以下问题。(2)设问:①|MF1|与|MF2|哪个大?②点M到F1与F2两点的距离的差怎样表示?③||MF1|-|MF2||与|F1F2|有何关系?(请学生回答:应小于|F1F2|且大于零,当常数等于|F1F2|时,轨迹是以F1、F2为端点的两条射线;当常数大于|F1F2|时,无轨迹)二.理论建构1.双曲线的定义引导学生概括出双曲线的定义:定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。(投影)概念中几个关键词:“平面内”、“距离的差的绝对值”、“常数小于21FF”奎屯王新敞新疆2.双曲线的标准方程现在我们可以用类似求椭圆标准方程的方法来求双曲线的标准方程,请学生思考、回忆椭圆标准方程的推导方法,随即引导学生给出双曲线标准方程的推导(教师使用多媒体演示)(1)建系取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴建立平面直角坐标系。(2)设点设M(x,y)为双曲线上任意一点,双曲线的焦距为2c(c0),则F1(-c,0)、F2(c,0),又设点M与F1、F2的距离的差的绝对值等于常数2a(2a2c).(3)列式由定义可知,双曲线上点的集合是P={M|||MF1|-|MF2||=2a}.即:(4)化简方程由学生板演,教师巡视。化简,整理得:移项,两边平方得两边再平方后整理得由双曲线定义知这个方程叫做双曲线的标准方程,它所表示的双曲线的焦点在x轴上,焦,22222aycxycxaycxycx22222222ycxaacx22222222acayaxac)0,0(1)0(,0,22222222222babyaxbbacacacac代入上式整理得设即yOxMF1F2点是F1(-c,0)、F2(c,0),思考:双曲线的焦点F1(0,-c)、F2(0,c)在y轴上的标准方程是什么?学生得到:双曲线的标准方程:)0(,12222babxay.注:(1).双曲线的标准方程的特点:①双曲线的标准方程有焦点在x轴上和焦点y轴上两种:焦点在x轴上时双曲线的标准方程为:12222byax(0a,0b);焦点在y轴上时双曲线的标准方程为:12222bxay(0a,0b)②cba,,有关系式222bac成立,且0,0,0cba奎屯王新敞新疆其中a与b的大小关系:可以为bababa,,奎屯王新敞新疆(2).焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x、2y项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴奎屯王新敞新疆而双曲线是根据项的正负来判断焦点所在的位置,即2x项的系数是正的,那么焦点在x轴上;2y项的系数是正的,那么焦点在y轴上奎屯王新敞新疆三.数学应用例1已知双曲线两个焦点的坐标为)0,5()0,5(21FF,,双曲线上一点P到21FF,的距离之差的绝对值等于8,求双曲线标准方程奎屯王新敞新疆解:因为双曲线的焦点在x轴上,所以设它的标准方程为12222byax(0a,0b)奎屯王新敞新疆∵102,82ca∴5,4ca∴1645222b奎屯王新敞新疆所求双曲线标准方程为116922yx奎屯王新敞新疆变式1:若|PF1|-|PF2|=6呢?变式2:若||PF1|-|PF2||=8呢?变式3:若||PF1|-|PF2||=10呢?2.已知双曲线的焦点为F1(0,-6)和F2(0,6),且经过点(2,-5)。分析:利用待定系数法列方程组求解四.课堂小结:双曲线的两类标准方程是)0,0(12222babyax焦点在x轴上,)0,0(12222babxay焦点在y轴上,cba,,有关系式222bac成立,且0,0,0cba奎屯王新敞新疆其中a与b的大小关系:可以为bababa,,奎屯王新敞新疆五、布置作业课后习题P55第1.3题.六、板书设计双曲线及其标准方程一、双曲线的定义三例1:定义的挖掘二、双曲线的标准方程例21、推导:2、对比:
本文标题:双曲线教案完整篇
链接地址:https://www.777doc.com/doc-7216566 .html