您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 相似三角形典型例题精选-(1)
1相似三角形的判定与性质综合运用经典题型考点一:相似三角形的判定与性质:例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°.求证:⑴△PAC∽△BPD;⑵CD2=AC·BD.例2、如图,在等腰△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=45°(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE取得最小值?(3)在AC上是否存在点E,使得△ADE为等腰三角形?若存在,求AE的长;若不存在,请说明理由?例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B:1)求证:△ADF∽△DEC;2)若AB=4,33AD,AE=3,求AF的长。ABCDEF2考点二:射影定理:例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF=14AD,EG⊥CF于点G,(1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG.例6、已知:如图所示的一张矩形纸片ABCD(ADAB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.ABCDEFG3例7、如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=CN•MN.例8、如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:(1)△AED∽△CBM;(2)AE•CM=AC•CD.例9、如图,四边形ABCD、CDEF、EFGH都是正方形.(1)⊿ACF与⊿ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.4考点三:相似三角形的实际应用:例10、如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长PQ是宽PN的2倍,则边长是多少?例11、小亮想利用太阳光下的影子测量校园内一棵大树的高,小亮发现因大树靠近学校围墙,大树的影子不全落在地面上,如图所示,经测量,墙上影高CD=1.5m,地面影长BC=10m.若此时1米高的标杆的影长恰好为2m.请你求出这棵大树AB的高度.例12、如图,九年级的数学活动课上,小明发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,求电线杆的高度.
本文标题:相似三角形典型例题精选-(1)
链接地址:https://www.777doc.com/doc-7221864 .html