您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 人教版中职数学基础模块上册--第一章集合教案
数学基础模块上册11.1.1集合的概念【教学目标】1.初步理解集合的概念;理解集合中元素的性质.2.初步理解“属于”关系的意义;知道常用数集的概念及其记法.3.引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学方法】本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【教学过程】环节教学内容师生互动设计意图导入师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象.引入课题.联系实际;激发兴趣.新课课件展示引例:(1)某学校数控班学生的全体;(2)正数的全体;(3)平行四边形的全体;(4)数轴上所有点的坐标的全体.师:每个例子中的“全体”是由哪些对象构成的?这些对象是否确定?你能举出类似的几个例子吗?学生回答.教师引导学生阅读教材,提出问题如下:(1)集合、元素的概念是如何定义的?(2)集合与元素之间的关系为何?是用什么符号表示的?(3)集合中元素的特性是什么?(4)集合的分类有哪些?(5)常用数集如何表示?教师检查学生自学情况,梳从具体事例直观感知集合,为给出集合的定义做好准备.老师提出问题,放手让学生自学,培养自学能力,提高学生的学习能力.检查自学、梳理知识阶段,穿插讲解第一章集合及其运算2新课1.集合的概念.(1)一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2)构成集合的每个对象都叫做集合的元素.(3)集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示.2.元素与集合的关系.(1)如果a是集合A的元素,就说a属于A,记作aA,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作aA.读作“a不属于A”.3.集合中元素的特性.(1)确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2)互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4.集合的分类.(1)有限集:含有有限个元素的集合叫做有限集.(2)无限集:含有无限个元素的集合叫做无限集.5.常用数集及其记法.(1)自然数集:非负整数全体构成的集合,记作N;(2)正整数集:非负整数集内排除0的集合,记作N+或N*;理本节课知识,并强调要注意的问题.教师要把集合与元素的定义分析透彻.请同学举出一些集合的例子,并说出所举例子中的元素.教师强调:“”的开口方向,不能把aA颠倒过来写.教师强调集合元素的确定性.师:高一(1)班高个子同学的全体能否构成集合?生:不能构成集合.这是由于没有规定多高才算是高个子,因而“高个子同学”不能确定.教师强调:相同的对象归入同一个集合时只能算作集合的一个元素.请学生试举有限集和无限集的例子.师:说出自然数集与非负整数集的关系.生:自然数集与非负整数集是相同的.师:也就是说,自然数集包括数0.解难点、强调重点、举例说明疑点等环节,使学生真正掌握所学知识.数学基础模块上册3新课(3)整数集:整数全体构成的集合,记作Z;(4)有理数集:有理数全体构成的集合,记作Q;(5)实数集:实数全体构成的集合,记作R.例1判断下列语句能否构成一个集合,并说明理由.(1)小于10的自然数的全体;(2)某校高一(2)班所有性格开朗的男生;(3)英文的26个大写字母;(4)非常接近1的实数.练习1判断下列语句是否正确:(1)由2,2,3,3构成一个集合,此集合共有4个元素;(2)所有三角形构成的集合是无限集;(3)周长为20cm的三角形构成的集合是有限集;(4)如果aQ,bQ,则a+bQ.例2用符号“”或“”填空:(1)1N,0N,-4N,0.3N;(2)1Z,0Z,-4Z,0.3Z;(3)1Q,0Q,-4Q,0.3Q;(4)1R,0R,-4R,0.3R.练习2用符号“”或“”填空:(1)-3N;(2)3.14Q;(3)13Z;(4)-12R;(5)2R;(6)0Z.师:出示例题,引导学生讨论、思考.生:讨论,回答,明确说出理由.生:模仿练习;讨论并口答.师:点拨、解答学生疑难.师:出示例题,请学生填写.生:口答各题结果.师:引导学生进行订正,并说明错误原因.学生模仿练习;老师订正、点拨.通过具体例子,师生的问答,巩固集合概念及其元素特性.通过练习进一步强化学生对集合中元素特性的理解.通过例题2和练习2,加深对特殊数集的理解以及元素与集合关系的理解与表示,既突出重点又分解难点.小结本节课学习了以下内容:1.集合的有关概念:集合、元素.2.元素与集合的关系:属于、不属于.3.集合中元素的特性.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处强调总结.第一章集合及其运算44.集合的分类:有限集、无限集.5.常用数集的定义及记法.作业教材P4,练习A组第1~3题.学生课后完成.巩固拓展.数学基础模块上册51.1.2集合的表示方法【教学目标】1.掌握集合的表示方法;能够按照指定的方法表示一些集合.2.发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.3.让学生感受集合语言的意义和作用,学习从数学的角度认识世界;通过合作学习培养学生的合作精神.【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.【教学难点】集合特征性质的概念,以及运用描述法表示集合.【教学方法】本节课采用实例归纳,自主探究,合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.【教学过程】环节教学内容师生互动设计意图导入1.集合、元素、有限集和无限集的概念是什么?2.用符号“”与“”填空白:(1)0N;(2)-2Q;(3)-2R.师:刚才复习了集合的有关概念,这节课我们一起研究如何将集合表示出来.回顾旧知;学习新知.新课1.列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为:{指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示.如:小于100的自然数的全体构成师:强调要注意的问题:①注意区别a与{a}.a是集合{a}的一个元素,而{a}表示一个集合.例如,某个代表团只有一个人,这个人本身和这个人构成的代表团是完全不同的;②用列举法表示集合时,不必考虑元素的前后顺序.师:集合{1,2}与{2,1}表示同一个集合吗?生:是.按集合元素不多和集合元素较多分类讲解,便于学生接受.多举实例也有利于概念的理解.第一章集合及其运算6新课的集合,可表示为{0,1,2,3,…,99}.例1用列举法表示下列集合:(1)所有大于3且小于10的奇数构成的集合;(2)方程x2-5x+6=0的解集.解(1){5,7,9};(2){2,3}.练习1用列举法表示下列集合:(1)大于3小于9的自然数全体;(2)绝对值等于1的实数全体;(3)一年中不满31天的月份全体;(4)大于3.5且小于12.8的整数的全体.2.性质描述法.给定x的取值集合I,如果属于集合A的任意元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质,于是集合A可以用它的特征性质描述为{xI|p(x)},它表示集合A是由集合I中具有性质p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1)特征性质明确;(2)若元素范围为R,“xR”可以省略不写.例2用性质描述法表示下列集合:(1)大于3的实数的全体构成的集合;(2)平行四边形的全体构成的集合;(3)平面内到两定点A,B距离相等的点的全体构成的集合.解(1){x|x3};多媒体展示例题1.学生口答.通过教师讲解、师生问答,详细说明什么是特征性质.出示例子:正偶数构成的集合.它的每一个元素都具有性质“能被2整除且大于0”,而这个集合外的其他元素都不具有这种性质,性质“能被2整除,且大于0”就是此集合的一个特征性质.引导学生根据上面的描述总结集合的特征性质是什么?师生共同归纳出性质描述法.教师强调用特征性质描述法时应注意的两个要点.讲解例题2,板书详细的解题过程.师:(1)一个集合的特征性质不是唯一的.如平行四边形全通过一组简单的口答题,掌握集合的列举法.通过例1和练习1,巩固列举法的使用.对集合性质描述法的理解是难点,此处通过举例,由特殊到一般,便于学生突破这一思维障碍.数学基础模块上册7新课(2){x|x是两组对边分别平行的四边形};(3)l={P,|PA|=|PB|,A,B为内两定点}.练习2用性质描述法表示下列集合:(1)目前你所在班级所有同学构成的集合;(2)正奇数的全体构成的集合;(3)绝对值等于3的实数的全体构成的集合;(4)不等式4x-53的解构成的集合;(5)所有的正方形构成的集合.体也可表示为{x|x是有一组对边平行且相等的四边形}.(2)在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合.学生模仿练习.请学生在黑板上写下答案,引导全班学生统一订正.老师点拨、解答学生疑难.通过例2,让学生掌握由描述法表示集合的不同类型:有限集、无限集或代数、几何的表示方法,并使学生规范解题步骤.通过练习,进一步突出重点,深化两种表示方法的灵活运用.小结本节课学习了以下内容:1.列举法.2.性质描述法.3.比较两种表示集合的方法,分析它们所适用的不同情况.师生共同分析总结:1.有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法.如:集合{2}.2.有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法.如:集合{xQ|1≤x≤4}.以学生为主体,关注学生对本节课的体验.作业教材P9,练习B组第1,2题.学生课后完成.巩固拓展.第一章集合及其运算81.1.3集合之间的关系(一)【教学目标】1.理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2.了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.3.培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.【教学重点】子集、真子集的概念.【教学难点】集合间包含关系的正确表示.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识.【教学过程】环节教学内容师生互动设计意图导入已知:M={-1,1},N={-1,1,3},P={x|x2-1=0}.问1.哪些集合表示方法是列举法?2.哪些集合表示方法是描述法?3.集合M中元素与集合N有何关系?集合M中元素与集合P有何关系?师:出示三个集合,并根据这些集合提出一组问题.生:思考并回答问题,师:通过回答上面的问题,我们发现了:集合M与集合N;集合M与集合P通过元素建立了某种关系,本节课,我们就来研究有关两个集合之间关系的问题.温故而知新,以旧带新,便于引导学生在已有的基础上去探求新知识,使学生对出现的新概念不至于感到突然,符合学生的认识规律,很自然地引入本节课内容.新课1.子集定义.如果集合A的任何一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作AB或BA;读作“A包含于B”,或“B包含A”.
本文标题:人教版中职数学基础模块上册--第一章集合教案
链接地址:https://www.777doc.com/doc-7239113 .html