您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 初二数学期末考试卷+答案
10题图八年级数学试卷时间:90分钟满分120分一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。1.下列二次根式中,最简二次根式是()A.3B.4C.8D.212.以下列各组数为边长,能构成直角三角形的是()A.3,4,5B.1,2,3C.2,2,6D.1,3,83.如图,在△ABC中,∠ACB=90°,AB=10,点D是AB的中点,则CD等于()A.4B.5C.5.5D.64.一次函数y=2x+1的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.数据2,6,4,5,4,3的众数是()A.2B.6C.4D.56.直线y=2x﹣6与x轴的交点坐标是()A.(0,3)B.(3,0)C.(0,﹣6)D.(﹣3,0)7.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件是()A.∠D=90°B.AB=CDC.AD=BCD.BC=CD8.若点A(1,y1),B(2,y2)在函数y=kx+b的图象上(如图所示),则()A.y1<y2B.y1>y2C.y1=y2D.无法确定9.如图,已知菱形ABCD的对角线BD的长为4cm,AC的长为22cm,则菱形的面积为().A.2cm2B.24cm2C.28cm2D.6cm210.如图,已知矩形ABCD,若动点P从点A出发,在折线8题图9题图3题图AD﹣DC﹣CB上匀速运动,到B点时停止,则△ABP的面积S(cm2)与运动时间t(s)的函数图象大致是()ABCD二、填空题(本大题共7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应位置上。11.代数式1x有意义的x的取值范围是.12.八年级(1)班某小组的5名学生进行飞镖训练,5名学生成绩分别为8,7,8,8,9环,则这个小组的平均成绩为________环.13.函数y=3x的图象上有一点A(m,6),则m的值为.14.在矩形ABCD中,已知AB=6,BC=8,则矩形ABCD的对角线BD为.15.如图,一垂直地面的木杆在离地面3m处折断,木杆顶端落在距离木杆底端4m处,木杆折断之前的高度是______m.16.在平面直角坐标系xoy中,若将直线y=2x+3向上平移2单位,平移后的函数的解析式为_______________.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示的方式放置.点A1,A2,A3和点C1,C2,C3分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B3的坐标是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.计算:(2436)2.19.在平面直角坐标系xOy中,一次函数y=kx+b的图象过A(1,2)和B(-1,4)两点,求y=kx+b函数的解析式.20.化简求值:()()abbabaab21a其中,1b.四、解答题(二)(本大题3小题,每小题8分,共24分)15题图t(s)S(cm2)t(s)S(cm2)t(s)S(cm2)t(s)S(cm2)17题图21.珠海某中学为了同学们积极锻炼身体,鼓励同学们参加线上打卡活动,八(1)班班主任抽查了20位同学并统计了他们10天的打卡次数如下:打卡次数45678910人数1223642(1)求20位同学打卡次数的平均数、中位数和众数;(2)为了调动同学们锻炼的积极性,学校评10天打卡9次及以上的同学为优秀,全年级有500人,请估算全年级约有多少人能达到优秀?并说明理由﹒22.如图,在平行四边形ABCD中,E、F分别是AB,CD中点,连接DE,BF.(1)求证:DE∥BF;(2)若∠A=45°,AD=4,DC=7,求平行四边形ABCD的面积.23.某公司疫情期间生产A、B两类防护服,其中A类防护服每件成本为100元,B类防护服每件成本为80元,该公司计划生产A,B两类防护服共1000件进行试销.(1)设生产A类防护服x件,生产这批防护服的总费用为y元.求y关于x的函数关系式,并直接写出x的取值范围;(2)若生产这批防护服的总费用不超过88000元,试销时A类防护服每件售价105元,B类防护服每件售价83元,销售完这批防护服,最多可以获得多大利润?五、解答题(三)(本大题2小题,每小题10分,共20分)FCEBDA24.如图,折叠矩形ABCD,使点B与点D重合,折痕为EF,BD与EF相交于点O.延长FE交BA延长线于点G.(1)连接BE,判断四边形BFDE是否为菱形?并证明你的结论;(2)若AG=AB,CF=2,求EF的长.25.如图,一次函数323xy的图像与坐标轴交于A,B两点,将线段AB沿x轴向右平移6个单位长度得到线段DC,连结AD.(1)∠ABO=_________°,CD的长度为_________;(2)在第一象限内,点E从点C出发,以每秒2个单位长度的速度沿线段CD运动,连结OE交AB于点F,设运动的时间为t(秒),是否存在时间t(秒),使得以点B,D,E,F所构成的四边形为平行四边形,若存在,请求出t的值;若不存在,请说明理由.数学答案及评分标准xyFDCABOE1.A2.A3.B4.D5.C6.B7.D8.B9.B10.C11.x112.813.214.1015.916.y=2x+517.3B(7,4)18.解:(2436)2原式=33-12……2分=33-32……4分3-……6分19.解:依题意得4bk-2bk……2分解得:1-k3b……4分所以解析式为:y=-x+3……6分20.解:化简得:原式=abb-a……3分把代入,1b12a原式=122……4分=2-2……6分21.解:(1)平均数7.55分,中位数8众数8……4分(2)180人……8分22解:(1)证明:∵四边形ABCD是平行四边形∴DC∥ABDC=AB……2分又∵E、F分别为AB,CD中点∴DF=BE∴四边形DEBF为平行四边形……3分∴DE∥BF……4分(2)过D作DH⊥AB于H……5分∵∠A=45ºAD=4∴DH=22……6分214722S……8分23.解:(1)y=20x+80000……3分1000x0……4分(2)由(1)得:8800080000x20解得400x…….6分利润W=5x+3(1000-x)=2x+3000当x=400时,最大利润为3800元……8分24.解:(1)判断是菱形.……..2分证明:根据折叠性质EB=ED,FB=FD……3分又∵ABCD为矩形∴∠EDO=∠OBF,∠DEO=∠OFB,BO=DO可证△EOD≌△FOB……4分∴ED=FB∴EB=BF=FD=DE∴四边形BFDE为菱形……5分(3)∵四边形ABCD为矩形∴∠BAD=90°又∵AG=AB,∴EG=EB∴∠GEA=∠BEA又∵四边形BFDE为菱形∴∠BEF=∠DEF又∵∠GEA=∠DEF∴∠AEB=∠OEB,可证△AEB≌△OBE……9分∴AE=OE=2又∵EO=FO,所以EF=4……10分25.解:(1)∠ABO=_____60____°CD的长度为_____4____……4分(2)存在……5分证明:过E作EH⊥OC于H,CH=t,EH=t3则E点坐标表示为(8-t,t3)……6分直线OE的解析式为:xtty83……7分则F)43,48(ttBF=tt832343BF=EDtt2483t=58……9分当时58t,为平行四边形……10分
本文标题:初二数学期末考试卷+答案
链接地址:https://www.777doc.com/doc-7250447 .html