您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 大学课件 > 大学课件 高等数学 下学期 5-4(定积分的几何应用平面图形的面积)
xyo)(xfyabxyo)(1xfy)(2xfyab曲边梯形的面积badxxfA)(曲边梯形的面积badxxfxfA)]()([12一、直角坐标系情形xxxxx例1计算由两条抛物线xy2和2xy所围成的图形的面积.解两曲线的交点)1,1()0,0(面积元素dxxxdA)(2选为积分变量x]1,0[xdxxxA)(21010333223xx.312xy2yx例2计算由曲线xxy63和2xy所围成的图形的面积.解两曲线的交点).9,3(),4,2(),0,0(236xyxxy选为积分变量x]3,2[x],0,2[)1(xdxxxxdA)6(231],3,0[)2(xdxxxxdA)6(3222xyxxy63于是所求面积21AAAdxxxxA)6(2023dxxxx)6(3230.12253说明:注意各积分区间上被积函数的形式.问题:积分变量只能选吗?x例3计算由曲线xy22和直线4xy所围成的图形的面积.解两曲线的交点).4,8(),2,2(422xyxy选为积分变量y]4,2[ydyyydA242.1842dAAxy224xy如果曲边梯形的曲边为参数方程)()(tytx曲边梯形的面积.)()(21ttdtttA(其中1t和2t对应曲线起点与终点的参数值)在[1t,2t](或[2t,1t])上)(tx具有连续导数,)(ty连续.例4求椭圆12222byax的面积.解椭圆的参数方程tbytaxsincos由对称性知总面积等于4倍第一象限部分面积.aydxA0402)cos(sin4tatdbdttab202sin4.ab设由曲线)(r及射线、围成一曲边扇形,求其面积.这里,)(在],[上连续,且0)(.xodd面积元素ddA2)]([21曲边扇形的面积.)]([212dA二、极坐标系情形)(r例5求双纽线2cos22a所围平面图形的面积.解由对称性知总面积=4倍第一象限部分面积14AAdaA2cos214402.2axy2cos22a1A例6求心形线)cos1(ar所围平面图形的面积)0(a.解dadA22)cos1(21daA202)cos1(212利用对称性知da)coscos21(202022sin41sin223a.232ad求在直角坐标系下、参数方程形式下、极坐标系下平面图形的面积.(注意恰当的选择积分变量有助于简化积分运算)三、小结思考题设曲线)(xfy过原点及点)3,2(,且)(xf为单调函数,并具有连续导数,今在曲线上任取一点作两坐标轴的平行线,其中一条平行线与x轴和曲线)(xfy围成的面积是另一条平行线与y轴和曲线)(xfy围成的面积的两倍,求曲线方程.思考题解答1S2Sxyo)(xfy),(yx122SSxdxxfS02)(xdxxfxySxyS021)(])([2)(00xxdxxfxydxxf,2)(30xydxxfx两边同时对求导xyxyxf22)(3yyx2积分得,2cxy因为曲线)(xfy过点)3,2(29c,292xy因为)(xf为单调函数所以所求曲线为.223xy
本文标题:大学课件 高等数学 下学期 5-4(定积分的几何应用平面图形的面积)
链接地址:https://www.777doc.com/doc-7273114 .html