您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 反比例函数与一次函数的综合应用
反比例函数知识点及考点:(一)反比例函数的概念:知识要点:1、一般地,形如y=xk(k是常数,k=0)的函数叫做反比例函数。注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A)y=xk(k≠0),(B)xy=k(k≠0)(C)y=kx-1(k≠0)例题讲解:有关反比例函数的解析式(1)下列函数,①1)2(yx②.11xy③21xy④.xy21⑤2xy⑥13yx;其中是y关于x的反比例函数的有:_________________。(2)函数22)2(axay是反比例函数,则a的值是()A.-1B.-2C.2D.2或-2(3)若函数11mxy(m是常数)是反比例函数,则m=________,解析式为________.(4)如果y是m的反比例函数,m是x的反比例函数,那么y是x的()A.反比例函数B.正比例函数C.一次函数D.反比例或正比例函数练习:(1)如果y是m的正比例函数,m是x的反比例函数,那么y是x的()(2)如果y是m的正比例函数,m是x的正比例函数,那么y是x的()(5)反比例函数(0kykx)的图象经过(—2,5)和(2,n),求1)n的值;2)判断点B(24,2)是否在这个函数图象上,并说明理由(6)已知y与2x-3成反比例,且41x时,y=-2,求y与x的函数关系式.(7)已知函数12yyy,其中1y与x成正比例,2y与x成反比例,且当x=1时,y=1;x=3时,y=5.求:(1)求y关于x的函数解析式;(2)当x=2时,y的值.(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。2、位置:(1)当k0时,双曲线分别位于第________象限内;(2)当k0时,双曲线分别位于第________象限内。3、增减性:(1)当k0时,_________________,y随x的增大而________;(2)当k0时,_________________,y随x的增大而______。4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k取互为相反数的两个反比例函数(如:y=x6和y=x6)来说,它们是关于x轴,y轴___________。例题讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限.(2)若反比例函数22)12(mxmy的图象在第二、四象限,则m的值是()A、-1或1;B、小于12的任意实数;C、-1;D、不能确定(3)下列函数中,当0x时,y随x的增大而增大的是()A.34yxB.123yxC.4yxD.12yx.(4)已知反比例函数2yx的图象上有两点A(1x,1y),B(2x,2y),且12xx,则12yy的值是()A.正数B.负数C.非正数D.不能确定(5)若点(1x,1y)、(2x,2y)和(3x,3y)分别在反比例函数2yx的图象上,且1230xxx,则下列判断中正确的是()A.123yyyB.312yyyC.231yyyD.321yyy(6)在反比例函数xky1的图象上有两点11()xy,和22()xy,,若xx120时,yy12,则k的取值范围是.(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y随x的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数:.(8)作出反比例函数xy4的图象,结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.(三)反比例函数与面积结合题型。知识要点:1、反比例函数与矩形面积:若P(x,y)为反比例函数xky(k≠0)图像上的任意一点如图1所示,过P作PM⊥x轴于M,作PN⊥y轴于N,求矩形PMON的面积.分析:S矩形PMON=xyxyPNPM∵xky,∴xy=k,∴S=k.2、反比例函数与矩形面积:若Q(x,y)为反比例函数xky(k≠0)图像上的任意一点如图2所示,过Q作QA⊥x轴于A(或作QB⊥y轴于B),连结QO,则所得三角形的面积为:S△QOA=2k(或S△QOB=2k).说明:以上结论与点在反比例函数图像上的位置无关.PyxOMN图1OByxAQ图2PyMx0N3MyNxO图4(1)如图3,在反比例函数xy6(x<0)的图象上任取一点P,过P点分别作x轴、y轴的垂线,垂足分别为M、N,那么四边形PMON的面积为.(2)反比例函数xky的图象如图4所示,点M是该函数图象上一点,MN⊥x轴,垂足为N.如果S△MON=2,这个反比例函数的解析式为______________(3)如图5,正比例函数(0)ykxk与反比例函数2yx的图象相交于A、C两点,过点A作AB⊥x轴于点B,连结BC.则ΔABC的面积等于()A.1B.2C.4D.随k的取值改变而改变.(4)如图6,A、B是函数2yx的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则()A.2SB.4SC.24SD.4S(5)如图7,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数xyxy24和的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为()yxOACB图6图5图7反比例函数与一次函数1、反比例函数与一次函数的比较函数正比例函数反比例函数解析式图象形状K0位置增减性K0位置增减性举一反三:1.函数y=-x与y=1x在同一直角坐标系中的图象是()2.当k0时,反比例函数xky和一次函数y=kx-k的图象大致为()3.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是().4.函数y=-ax+a与xay(a≠0)在同一坐标系中的图象可能是()5.已知函数kyx中,0x时,y随x的增大而增大,则ykxk的大致图象为()A.xyOB.xyOC.xyOD.xyO图5xyCOxyDOxyBOxyAO24-4-242-2-424-4-242-2-424-4-242-2-424-4-242-2-42、反比例函数与一次函数交点反比例函数与一次函数交点分两种情况:有两个,或者没有练习题:1.在函数y=1x与函数y=x+2的图象在同一平面直角坐标系内的交点个数是().A.1个B.2个C.3个D.0个2.已知正比例函数xky11和反比例函授xky22的图像都经过点(2,1),则1k、2k的值分别为()A1k=21,2k=21B1k=2,2k=21C1k=2,2k=2D1k=21,2k=23.反比例函数kyx与正比例函数2yx图像的一个交点的横坐标为1,则反比例函数的图像大致为()ABCD4.已知关于x的一次函数y=kx+1和反比例函数y=6x的图象都经过点(2,m),则一次函数的解析式是________.5.已知一次函数y=2x-5的图象与反比例函数y=xk(k≠0)的图象交于第四象限的一点P(a,-3a),则这个反比例函数的关系式为。6.若函数xmy)12(与xmy3的图象交于第一、三象限,则m的取值范围是7.若一次函数y=x+b与反比例函数y=kx图象,在第二象限内有两个交点,则k______0,b_______0,(用“”、“”、“=”填空)3、求一次函数和反比例函数的关系式.例:如图,反比例函数xky的图象与一次函数baxy的图象交于M、N两点。(1)求反比例函数和一次函数的解析式。(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围。xyoMN(2,m)(-1,-4)xyoMN(2,m)(-1,-4)举一反三:1.如图,一次函数y=kx+b的图象与反比例函数myx的图象相交于A,B两点。(1)求反比例函数与一次函数的表达式(2)根据图象求出一次函数大于反比例函数的值时x的取值范围。2.如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A,B两点,且与反比例函数y=mx(m≠0)的图象在第一象限交于C点,CD⊥x轴,垂足为D,若OA=OB=OD=1.求(1)点A,B,D坐标;(2)一次函数与反比例函数的解析式。3.如图,反比例函数4yx的图象与直线14yx的交点为A,B,过点A作y轴的平行线与过点B作x轴的平行线相交于点C。求(1)点A、B的坐标;(2)ABC△的面积。4.如图,一次函数ykxb的图象与反比例函数myx的图象交于(21)(1)ABn,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB△的面积.5.已知一次函数bkxy的图像与反比例函数xy8的图像交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求(1)一次函数的解析式;(2)△AOB的面积第2题图AOBCxy第3题图OyxBA第4题图第5题图第1题图4、实际问题与反比例函数用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。(1)由题意列关系式例:某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:(1)题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得VP96,(2)当v=8m3时代入P=96v得P=120千帕;(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于32立方米举一反三:1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式3.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度4.小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v(米/分),所需时间为t(分)(1)则速度v与时间t之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?(2)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?5.学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天(1)则y与x之间有怎样的函数关系?(2)画函数图象(3)若每天节约0.1吨,则这批煤能维持多少天?(2)利用图象列关系式例:为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物
本文标题:反比例函数与一次函数的综合应用
链接地址:https://www.777doc.com/doc-7279225 .html