您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高考卷 17届 北京市高考数学卷(文科)
2017年北京市高考数学试卷(文科)一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁UA=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2B.C.D.4.(5分)若x,y满足,则x+2y的最大值为()A.1B.3C.5D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60B.30C.20D.107.(5分)设,为非零向量,则“存在负数λ,使得=λ”是•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为.②该小组人数的最小值为.三、解答题15.(13分)已知等差数列{an}和等比数列{bn}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{an}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.16.(13分)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.20.(13分)已知函数f(x)=excosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.2017年北京市高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)(2017•北京)已知全集U=R,集合A={x|x<﹣2或x>2},则∁UA=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)【考点】1F:补集及其运算.菁优网版权所有【专题】11:计算题;37:集合思想;5J:集合.【分析】根据已知中集合A和U,结合补集的定义,可得答案.【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁UA=[﹣2,2],故选:C【点评】本题考查的知识点是集合的补集及其运算,难度不大,属于基础题.2.(5分)(2017•北京)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【考点】A1:虚数单位i及其性质.菁优网版权所有【专题】35:转化思想;59:不等式的解法及应用;5N:数系的扩充和复数.【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)(2017•北京)执行如图所示的程序框图,输出的S值为()A.2B.C.D.【考点】EF:程序框图.菁优网版权所有【专题】5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)(2017•北京)若x,y满足,则x+2y的最大值为()A.1B.3C.5D.9【考点】7C:简单线性规划.菁优网版权所有【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)(2017•北京)已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【考点】3N:奇偶性与单调性的综合.菁优网版权所有【专题】2A:探究型;4O:定义法;51:函数的性质及应用.【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:B.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)(2017•北京)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60B.30C.20D.10【考点】L!:由三视图求面积、体积.菁优网版权所有【专题】31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】由三视图可知:该几何体为三棱锥,如图所示.【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.菁优网版权所有【专题】35:转化思想;5A:平面向量及应用;5L:简易逻辑.【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(5分)(2017•北京)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【考点】4G:指数式与对数式的互化.菁优网版权所有【专题】11:计算题.【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故本题选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题9.(5分)(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【考点】GI:三角函数的化简求值.菁优网版权所有【专题】11:计算题;35:转化思想;4O:定义法;56:三角函数的求值.【分析】推导出α+β=π+2kπ,k∈Z,从而sinβ=sin(π+2kπ﹣α)=sinα,由此能求出结果.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.【点评】本题考查角的正弦值的求法,考查对称角、诱导公式,正弦函数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是基础题.10.(5分)(2017•北京)若双曲线x2﹣=1的离心率为,则实数m=2.【考点】KC:双曲线的简单性质.菁优网版权所有【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】利用双曲线的离心率,列出方程求和求解m即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.11.(5分)(2017•北京)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是[,1].【考点】3W:二次函数的性质.菁优网版权所有【专题】11:计算题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0
本文标题:高考卷 17届 北京市高考数学卷(文科)
链接地址:https://www.777doc.com/doc-7288627 .html