您好,欢迎访问三七文档
第1页共73页函数概念与表示一.要点精讲1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”。函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对第2页共73页应就叫映射。注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述。(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。6.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。7.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;8.复合函数若y=f(u),u=g(x),x(a,b),u(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。二.典例解析题型1:函数概念例1.(1)设函数).89(,)100()]5([)100(3)(fxxffxxxf求(2)(2001上海理,1)设函数f(x)=),1(,log]1,(,281xxx,则满足f(x)=41的x值为。题型二:判断两个函数是否相同例2.试判断以下各组函数是否表示同一函数?(1)f(x)=2x,g(x)=33x;(2)f(x)=xx||,g(x)=;01,01xx(3)f(x)=1212nnx,g(x)=(12nx)2n-1(n∈N*);(4)f(x)=x1x,g(x)=xx2;(5)f(x)=x2-2x-1,g(t)=t2-2t-1。第3页共73页题型三:函数定义域问题例3.求下述函数的定义域:(1)02)23()12lg(2)(xxxxxf;(2)).lg()lg()(22axkaxxf题型四:函数值域问题例4.求下列函数的值域:(1)232yxx;(2)265yxx;(3)312xyx;(4)41yxx;(5)21yxx;(6)|1||4|yxx;(7)22221xxyxx;(8)2211()212xxyxx;(9)1sin2cosxyx。题型五:函数解析式例5.(1)已知3311()fxxxx,求()fx;(2)已知2(1)lgfxx,求()fx;(3)已知()fx是一次函数,且满足3(1)2(1)217fxfxx,求()fx;(4)已知()fx满足12()()3fxfxx,求()fx。题型六:函数应用例6.(2003北京春,理文21)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?题型7:课标创新题第4页共73页例7(1)设dcxbxaxxxf234)(,其中a、b、c、d是常数。如果,30)3(,20)2(,10)1(fff求的值)6()10(ff;(2)若不等式)1(122xmx对满足22m的所有m都成立,求x的取值范围。三.思维总结“函数”是数学中最重要的概念之一,学习函数的概念首先要掌握函数三要素的基本内容与方法。由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆它依赖于对各种式的认识与解不等式技能的熟练。1.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()fx求[()]fgx或已知[()]fgx求()fx:换元法、配凑法;(3)已知函数图像,求函数解析式;(4)()fx满足某个等式,这个等式除()fx外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等。2.求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知()fx的定义域求[()]fgx的定义域或已知[()]fgx的定义域求()fx的定义域:①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;②若已知()fx的定义域,ab,其复合函数()fgx的定义域应由()agxb解出。3.求函数值域的各种方法函数的值域是由其对应法则和定义域共同决定的。其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域。①直接法:利用常见函数的值域来求一次函数y=ax+b(a0)的定义域为R,值域为R;第5页共73页反比例函数)0(kxky的定义域为{x|x0},值域为{y|y0};二次函数)0()(2acbxaxxf的定义域为R,当a0时,值域为{abacyy4)4(|2};当a0时,值域为{abacyy4)4(|2}。②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2nmxcbxaxxf的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:)0(kxkxy,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。四.练习1、(2006山东文2)设1232,2()((2))log(1)2.xexfxffxx<,则的值为,()A.0B.1C.2D.32、(2006安徽文理15)(1)函数fx对于任意实数x满足条件12fxfx,若15,f则5ff__________;(2)函数fx对于任意实数x满足条件12fxfx,若15,f则5ff__________。3、.已知函数fx定义域为(0,2),求下列函数的定义域:(1)2()23fx;(2)212()1log(2)fxyx。第6页共73页4、已知函数f(x)=31323axaxx的定义域是R,则实数a的取值范围是()A.a>31B.-12<a≤0C.-12<a<0D.a≤315、求函数232yxx,[1,3]x的值域。6、(2006重庆理21)已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x。(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)=x0。求函数f(x)的解析表达式。7、(2006湖南理20)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)物体质量(含污物)污物质量1为8.0,要求清洗完后的清洁度为99.0。有两种方案可供选择,方案甲:一次清洗;方案乙:分两次清洗。该物体初次清洗后受残留水等因素影响,其质量变为)31(aa。设用x单位质量的水初次清洗后的清洁度是18.0xx)1(ax,用y单位质量的水第二次清洗后的清洁度是ayacy,其中c)99.08.0(c是该物体初次清洗后的清洁度。(Ⅰ)分别求出方案甲以及95.0c时方案乙的用水量,并比较哪一种方案用水量较少;(Ⅱ)若采用方案乙,当a为某固定值时,如何安排初次与第二次清洗的用水量,使总用水量最小?并讨论a取不同数值时对最少总用水量多少的影响。第7页共73页函数的基本性质一.要点精讲1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。(2)利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;②设()fx,()gx的定义域分别是12,DD,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,
本文标题:高中函数复习教案
链接地址:https://www.777doc.com/doc-7297395 .html