您好,欢迎访问三七文档
第四章非平稳序列的确定性分析本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.4.1时间序列的分解Wold分解定理HermanWold,(1908-1992),瑞典人1938年提出Wold分解定理。1960年提出偏最小二乘估计方法(PLS)Cramer分解定理HaraldCremer(1893-1985),瑞典人,斯德哥尔摩大学教授,Wold的指导教师。Wold分解定理(1938)对于任何一个离散平稳过程它都可以分解为两个不相关的平稳序列之和,其中一个为确定性的,另一个为随机性的,不妨记作其中:为确定性序列,为随机序列,它们需要满足如下条件(1)(2)(3)}{txtttVx}{tVt0jjtjt020,1jj),0(~2WNtstVEst,0),(确定性序列与随机序列的定义对任意序列而言,令关于q期之前的序列值作线性回归其中为回归残差序列,。确定性序列,若随机序列,若tytytqtqttyyy1210}{t2)(qtVar2lim0qq)(lim2tqqyVarARMA模型分解ttBBx)()(确定性序列随机序列Cramer分解定理(1961)任何一个时间序列都可以分解为两部分的叠加:其中一部分是由多项式决定的确定性趋势成分,另一部分是平稳的零均值误差成分,即}{txtttx确定性影响随机性影响taB)(djjjt0对两个分解定理的理解Wold分解定理说明任何平稳序列都可以分解为确定性序列和随机序列之和。它是现代时间序列分析理论的灵魂,是构造ARMA模型拟合平稳序列的理论基础。Cramer分解定理是Wold分解定理的理论推广,它说明任何一个序列的波动都可以视为同时受到了确定性影响和随机性影响的综合作用。平稳序列要求这两方面的影响都是稳定的,而非平稳序列产生的机理就在于它所受到的这两方面的影响至少有一方面是不稳定的。本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.4.2确定性因素分解传统的因素分解长期趋势循环波动季节性变化随机波动现在的因素分解长期趋势波动季节性变化随机波动确定性时序分析的目的克服其它因素的影响,单纯测度出某一个确定性因素对序列的影响推断出各种确定性因素彼此之间的相互作用关系及它们对序列的综合影响本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.4.3趋势分析目的有些时间序列具有非常显著的趋势,我们分析的目的就是要找到序列中的这种趋势,并利用这种趋势对序列的发展作出合理的预测常用方法趋势拟合法平滑法趋势拟合法趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法分类线性拟合非线性拟合线性拟合使用场合长期趋势呈现出线形特征模型结构)(,0)(ttttIVarIEIbtax例4.1澳大利亚政府1981——1990年每季度的消费支出序列线性拟合模型参数估计方法最小二乘估计参数估计值2)(,0)(40,2,1,ttttIVarIEtIbtax12.89ˆ,69.8498ˆba拟合效果图非线性拟合使用场合长期趋势呈现出非线形特征参数估计指导思想能转换成线性模型的都转换成线性模型,用线性最小二乘法进行参数估计实在不能转换成线性的,就用迭代法进行参数估计常用非线性模型模型变换变换后模型参数估计方法线性最小二乘估计线性最小二乘估计--迭代法--迭代法--迭代法2ctbtaTtttabTttbcaTtbcateTttbcaT122ttttTTlnaalnbbln2ctbtaTttbaTt例4.2:对上海证券交易所每月末上证指数序列进行模型拟合非线性拟合模型变换参数估计方法线性最小二乘估计拟合模型口径2ctbtaTt22tt20952.02517.502tTt拟合效果图平滑法平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律常用平滑方法移动平均法指数平滑法移动平均法基本思想假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。根据这种假定,我们可以用一定时间间隔内的平均值作为某一期的估计值分类n期中心移动平均n期移动平均n期中心移动平均为偶数,为奇数,nxxxxxnnxxxxxnxntnttntntntnttntntt)2121(1)(1~2121222112112121tx2tx1tx1tx2tx5~2112ttttttxxxxxx5期中心移动平均n期移动平均tx1tx2tx3tx4tx5~1234ttttttxxxxxx)(1~11nttttxxxnx5期移动平均移动平均期数确定的原则事件的发展有无周期性以周期长度作为移动平均的间隔长度,以消除周期效应的影响对趋势平滑的要求移动平均的期数越多,拟合趋势越平滑对趋势反映近期变化敏感程度的要求移动平均的期数越少,拟合趋势越敏感移动平均预测)(1ˆ21nlTlTlTlTxxxnxilxilxxilTilTilT,,ˆ例4.3某一观察值序列最后4期的观察值为:5,5.5,5.8,6.2(1)使用4期移动平均法预测。(2)求在二期预测值中前面的系数等于多少?2ˆTx2ˆTxTx例4.3解(1)(2)在二期预测值中前面的系数等于45.548.54.556.5ˆ41ˆ6.542.68.54.5541ˆ21123211TTTTTTTTTTxxxxxxxxxx2112123121231ˆˆ41144511616TTTTTTTTTTTTTTTTxxxxxxxxxxxxxxxxTx165指数平滑法指数平滑方法的基本思想在实际生活中,我们会发现对大多数随机事件而言,一般都是近期的结果对现在的影响会大些,远期的结果对现在的影响会小些。为了更好地反映这种影响作用,我们将考虑到时间间隔对事件发展的影响,各期权重随时间间隔的增大而呈指数衰减。这就是指数平滑法的基本思想分类简单指数平滑Holt两参数指数平滑简单指数平滑基本公式等价公式221)1()1(~ttttxxxx1~)1(~tttxxx经验确定初始值的确定平滑系数的确定一般对于变化缓慢的序列,常取较小的值对于变化迅速的序列,常取较大的值经验表明的值介于0.05至0.3之间,修匀效果比较好。10~xx简单指数平滑预测一期预测值二期预测值期预测值l2211)1()1(~ˆTTTTTxxxxx1111212ˆˆ)1(ˆ)1()1(ˆˆTTTTTTTxxxxxxx2,ˆˆ1lxxTlT例4.4对某一观察值序列使用指数平滑法。已知,,平滑系数(1)求二期预测值。(2)求在二期预测值中前面的系数等于多少?tx10Tx5.10~1Tx25.02ˆTx2ˆTxTx例4.4解(1)(2)所以使用简单指数平滑法二期预测值中前面的系数就等于平滑系数3.10ˆˆ3.10~75.025.0~ˆ1211TTTTTTxxxxxx112)1(ˆˆTTTTxxxxTx25.0Holt两参数指数平滑使用场合适用于对含有线性趋势的序列进行修匀构造思想假定序列有一个比较固定的线性趋势两参数修匀rxxtt1ˆ1111)1()~~()~)(1(~ttttttttrxxrrxxx初始值的确定平滑序列的初始值趋势序列的初始值10~xxnxxrn110Holt两参数指数平滑预测期预测值lTTlTrlxx~ˆ例4.5对北京市1978——2000年报纸发行量序列进行Holt两参数指数平滑。指定51259~10xx4325231230xxr15.01.0例4.5平滑效果图4.3季节效应分析【例4.6】以北京市1995年——2000年月平均气温序列为例,介绍季节效应分析的基本思想和具体操作步骤。时序图本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.季节指数季节指数的概念所谓季节指数就是用简单平均法计算的周期内各时期季节性影响的相对数季节模型ijjijISxx季节指数的计算计算周期内各期平均数计算总平均数计算季节指数mknxxniikk,,2,1,1nmxxnimkik11mkxxSkk,,2,1,季节指数的理解季节指数反映了该季度与总平均值之间的一种比较稳定的关系如果这个比值大于1,就说明该季度的值常常会高于总平均值如果这个比值小于1,就说明该季度的值常常低于总平均值如果序列的季节指数都近似等于1,那就说明该序列没有明显的季节效应例4.6季节指数的计算例4.6季节指数图本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.综合分析常用综合分析模型加法模型乘法模型混合模型ttttISTxttttISTx)())ttttttttITSxbITSxa例4.7对1993年——2000年中国社会消费品零售总额序列(数据见附录1.11)进行确定性时序分析。(1)绘制时序图(2)选择拟合模型长期递增趋势和以年为固定周期的季节波动同时作用于该序列,因而尝试使用混合模型(b)拟合该序列的发展)(ttttITSx(3)计算季节指数月份季节指数月份季节指数10.98270.92920.94380.94030.92091.00140.911101.05450.925111.10060.951121.335季节指数图季节调整后的序列图ttttITSxˆ(4)拟合长期趋势tTt93178.20522.1015ˆ(5)残差检验ttttITSxˆˆ(6)短期预测ˆˆˆ()ttltlxlST本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.X-11过程简介X-11过程是美国国情调查局编制的时间序列季节调整过程。它的基本原理就是时间序列的确定性因素分解方法因素分解长期趋势起伏季节波动不规则波动交易日影响模型加法模型乘法模型方法特色普遍采用移动平均的方法用多次短期中心移动平均消除随机波动用周期移动平均消除趋势用交易周期移动平均消除交易日影响例4.7续对1993年——2000年中国社会消费品零售总额序列使用X-11过程进行季节调整选择模型(无交易日影响)ttttISTxX11过程获得的季节指数图季节调整后的序列图趋势拟合图随机波动序列图本章上机指导拟合线性趋势拟合非线性趋势X-11过程
本文标题:时间序列分析第四章
链接地址:https://www.777doc.com/doc-731584 .html