您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 时间序列预测的常用方法手册
第八章时间序列预测什么是时间序列预测时间序列预测的常用方法时间序列预测法的优缺点分析8.1时间序列预测的概述时间序列预测的概念时间序列预测的原理与依据8.1.1时间序列预测的概念时间序列预测法是一种定量分析方法,它是在时间序列变量分析的基础上,运用一定的数学方法建立预测模型,使时间趋势向外延伸,从而预测未来市场的发展变化趋势,确定变量预测值。时间序列预测法也叫历史延伸法或外推法。时间序列预测法的基本特点是:假定事物的过去趋势会延伸到未来;预测所依据的数据具有不规则性;撇开了市场发展之间的因果关系。8.1.2时间序列预测的原理与依据时间序列是指同一变量按事件发生的先后顺序排列起来的一组观察值或记录值。构成时间序列的要素有两个:其一是时间,其二是与时间相对应的变量水平。实际数据的时间序列能够展示研究对象在一定时期内的发展变化趋势与规律,因而可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。8.2平均数预测平均数预测是最简单的定量预测方法。平均数预测法的运算过程简单,常在市场的近期、短期预测中使用。最常用的平均数预测法有:简单算术平均数法加权算术平均数法几何平均数法8.2.1简单算术平均数法(1)简单平均数法是用一定观察期内预测目标的时间序列的各期数据的简单平均数作为预测期的预测值的预测方法。在简单平均数法中,极差越小、方差越小,简单平均数作为预测值的代表性越好。简单平均数法的预测模型是:nxnxxxxxxniin1321...8.2.1简单算术平均数法(2)例观察期123456预测值观察值10501080103010701050106010578.2.2加权算术平均数法(1)加权算术平均数法是简单算术平均数法的改进。它根据观察期各个时间序列数据的重要程度,分别对各个数据进行加权,以加权平均数作为下期的预测值。对于离预测期越近的数据,可以赋予越大的权重。加权算术平均数法的预测模型是:1......3211332211nniiinn其中8.2.2加权算术平均数法(2)例观察期123456预测值观察值1050108010301070105010601056权重(w)0.10.10.150.150.20.38.2.3几何平均数法(1)几何平均数法是以一定观察期内预测目标的时间序列的几何平均数作为某个未来时期的预测值的预测方法。几何平均数法一般用于观察期有显著长期变动趋势的预测。几何平均数法的预测模型是:nnnnnnnaaaaaaaaaaxxxxxxxx01231201321......或8.2.3几何平均数法(2)例(本例中几何平均增长速度为3.87%。)观察期01234567预测值观察值115012101290136013801415147015001558环比速度--105.2106.6105.4101.5102.5103.9102.08.3移动平均数预测移动平均法根据时间序列逐项移动,依次计算包含一定项数的平均数,形成平均数时间序列,并据此对预测对象进行预测。移动平均可以消除或减少时间序列数据受偶然性因素干扰而产生的随机变动影响。移动平均法在短期预测中较准确,长期预测中效果较差。移动平均法可以分为:一次移动平均法二次移动平均法8.3.1一次移动平均法(1)一次移动平均法适用于具有明显线性趋势的时间序列数据的预测。一次移动平均法只能用来对下一期进行预测,不能用于长期预测。必须选择合理的移动跨期,跨期越大对预测的平滑影响也越大,移动平均数滞后于实际数据的偏差也越大。跨期太小则又不能有效消除偶然因素的影响。跨期取值可在3~20间选取。8.3.1一次移动平均法(2)一次移动平均数的计算公式如下:nxxxxMxntttttt)1(21)1(1...8.3.1一次移动平均法(3)例观察年份时序实际观察值Mt(1)(n=4)199113819922451993335199444941.75199557049.75199664349.25199774652.00199885553.50199994547.252000106552.752001116457.252002124354.258.3.2二次移动平均法(1)二次移动平均法是对一次移动平均数再次进行移动平均,并在两次移动平均的基础上建立预测模型对预测对象进行预测。二次移动平均法与一次移动平均法相比,其优点是大大减少了滞后偏差,使预测准确性提高。二次移动平均只适用于短期预测。而且只用于的情形。0T8.3.2二次移动平均法(2)二次移动平均法的预测模型如下:)(122......)2()1()2()1()1()1()1(2)1(1)1()2()1(21)1(ttttttttTtntttttntttttMMnbMMaTbaxnMMMMMnxxxxM其中8.3.2二次移动平均法(3)例观察年份时序实际观察值Mt(1)(n=4)Mt(2)(n=4)199113819922451993335199444941.75199557049.75199664349.25199774652.0048.19199885553.5051.13199994547.2550.502000106552.7551.382001116457.2552.692002124354.2552.888.3.2二次移动平均法(4)根据模型计算得到53.561913.062.55913.062.55913.0)88.5225.54(142)(1262.5588.5225.542211212)2(12)1(1212)2(12)1(1212xTxMMnbMMaT预测2003年所以有8.4指数平滑法预测指数平滑法来自于移动平均法,是一次移动平均法的延伸。指数平滑法是对时间数据给予加工平滑,从而获得其变化规律与趋势。根据平滑次数的不同,指数平滑法可以分为:一次指数平滑法二次指数平滑法三次指数平滑法8.4.1一次指数平滑法(1)公式:基本计算公式一次指数平滑预测模型当时间序列数据大于50时,初始值S0(1)对St(1)计算结果影响极小,可以设定为x1;当时间序列数据小于50时,初始值S0(1)对St(1)计算结果影响较大,应取前几项的平均值。tttxxx)1(1)1(1221)1(1)1()1(...)1()1()1(tttttttttxxxxSxS8.4.1一次指数平滑法(2)例(,S0(1)取为前三项的平均值)时序12345678910111213销售量10158201016182022242026St(1)1110.512.810.415.212.614.316.218.120.122.021.023.55.08.4.2二次指数平滑法(1)二次指数平滑的计算公式预测的数学模型)2(1)1()2()1(tttSSS)(12)2()1()2()1(ttttttttTtSSbSSaTbax其中8.4.2二次指数平滑法(2)例:有关数据的计算见下表()。根据例中数据,有观察年份时序观察值St(1)St(2)199614041.53442.655199724745.90645.256199835653.98152.236199946562.79660.684200057068.55966.984200167573.71272.366200278280.34278.747TTbaxSSbSSaT38.6937.8138.6)747.78342.80(8.018.0)(1937.81747.78342.8022777)2(7)1(77)2(7)1(778.08.4.3三次指数平滑法(1)当时间序列为非线性增长时,一次指数平滑与二次指数平滑都将失去有效性;此时需要使用三次指数平滑法。三次指数平滑法建立的模型是抛物线模型。三次指数平滑的计算公式是:)3(1)2()3()2(1)1()2()1(1)1()1()1()1(tttttttttSSSSSSSxS8.4.3三次指数平滑法(2)三次指数平滑法的数学预测模型:)2()1(2])34()45(2)56[()1(233)3()2()1(22)3()2()1()3()2()1(2tttttttttttttttTtSSScSSSbSSSaTcTbax其中8.5趋势法预测分割平均法直线趋势的分割平均法抛物线趋势的分割平均法最小二乘法三点法直线趋势预测模型抛物线趋势预测模型8.5.1直线趋势的分割平均法(1)直线趋势的分割平均法的过程首先将时间序列数据分为前后相等的两段(当数据为奇数个时,去掉数列第1项或中间1项),并分别求出两端数据对应观察值与时序的平均值,并以此为坐标;假设两点的坐标分别为。则选定直线趋势方程为:111212tbxattxxbbtax其中)、(2211,),(txtx8.5.1直线趋势的分割平均法(2)例观察年份199419951996199719981999200020012002时序123456789观察值131516181921232426预测值2003(25.5)8.5.1直线趋势的分割平均法(3)计算过程tbtaxtbxattxxbttxx6.15.95.95.26.15.156.1585.25.75.155.235.7498765.2443215.234262423215.1541816151311121221218.5.2抛物线趋势的分割平均法(1)抛物线趋势的分割平均法要求将时间序列数据划分为等距离的三段。若数列不能被3整除,当余数为1时去掉数列首项;当余数为2时,去掉三段中间所夹两项。抛物线趋势的分割平均法的预测模型为:、可以由下列方程组求得2ˆctbtax233322222111tctbaxtctbaxtctbaxacb、8.5.2抛物线趋势的分割平均法(2)例将上表数据分为等距的三段,每段两个数据。分别计算三点坐标得到:观察年份199719981999200020012002时序123456观察值1200140016201862212724135.526522702241321275.324317412186216205.12211300214001200332211txtxtx8.5.2抛物线趋势的分割平均法(3)待定参数的联立方程组为:2222115.16525.1024115.16525.10245.55.522705.35.317415.15.11300ttxcbacbacbacba所以有求解得8.5.3最小二乘法(1)最小二乘法即适用于直线趋势的预测,也适用于曲线趋势的预测。最小二乘法直线趋势预测模型为:tbxtbxnattnxttxnbbtax)(1)(22其中8.5.3最小二乘法(2)例观察年份时序(t)观察值(x)txt2趋势值199311313112.7199421530415.5199531854918.21996420801620.919975241202523.619986271623626.319997302
本文标题:时间序列预测的常用方法手册
链接地址:https://www.777doc.com/doc-731751 .html