您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2019-2020学年天津市河北区八年级上册期末数学试卷(有答案)【优质版】
2019-2020学年天津市河北区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)3.(3分)要使分式有意义,x应满足的条件是()A.x>3B.x=3C.x<3D.x≠34.(3分)计算x3•x2的结果是()A.x6B.x5C.x2D.x5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5B.5C.﹣D.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x=时,分式的值为零.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为.11.(3分)已知xm=6,xn=3,则x2m﹣n的值为.12.(3分)分解因式:27x2+18x+3=.13.(3分)若关于x的分式方程无解,则m的值是.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH=.三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+3019.(8分)解分式方程:+=1.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?2019-2020学年天津市河北区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)【解答】解:(A)x2+2x﹣1≠(x﹣1)2,故A不是因式分解,(B)a2﹣b2=(a+b)(a﹣b),故B不是因式分解,(D)ax2﹣a=a(x2﹣1)=a(x+1)(x﹣1),故D分解不完全,故选:C.3.(3分)要使分式有意义,x应满足的条件是()A.x>3B.x=3C.x<3D.x≠3【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选:D.4.(3分)计算x3•x2的结果是()A.x6B.x5C.x2D.x【解答】解:x3•x2=x3+2=x5.故选:B.5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5B.5C.﹣D.【解答】解:∵点P(a,3)、Q(﹣2,b)关于y轴对称,∴a=2,b=3,则==﹣.故选:C.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④【解答】解:式子:①,②,③,④,其中是分式的有:①,④.故选:B.7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【解答】解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即:=+10,故选:B.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x=﹣3时,分式的值为零.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为2.3×10﹣5..【解答】解:0.000023=2.3×10﹣5,故答案为:2.3×10﹣5.11.(3分)已知xm=6,xn=3,则x2m﹣n的值为12.【解答】解:x2m﹣n=(xm)2÷xn=36÷3=12.故答案为:12.12.(3分)分解因式:27x2+18x+3=3(3x+1)2.【解答】解:27x2+18x+3,=3(9x2+6x+1),=3(3x+1)2.13.(3分)若关于x的分式方程无解,则m的值是3.【解答】解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=3,即m的值为3.故答案为3.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是20°.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B的度数是20°.故答案为20°.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为50°或130°.【解答】解:如图,DF=DF′=DE;∵BD平分∠ABC,由图形的对称性可知:△BDE≌△BDF,∴∠DFB=∠DEB;∵DE∥AB,∠ABC=50°,∴∠DEB=180°﹣50°=130°;∴∠DFB=130°;当点F位于点F′处时,∵DF=DF′,∴∠DF′B=∠DFF′=50°,故答案是:50°或130°.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH=.【解答】证明:延长FB到点M,使BM=DG,连接CM∵△ABD是等边三角形,∴AD=BD,∠A=∠ABD=60°,在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴∠ADE=∠DBF,∵∠CDG=∠ADC﹣∠ADE=120°﹣∠ADE,∠CBM=120°﹣∠DBF,∴∠CBM=∠CDG,∵△DBC是等边三角形,∴CD=CB,在△CDG和△CBM中,∴△CDG≌△CBM,∴∠DCG=∠BCM,CG=CM,∴∠GCM=∠DCB=60°,∴△CGM是等边三角形,∴CG=GM=BG+BM=BG+DG,∵(a+b)2=a2+b2+2ab=9,∴a+b=3,∴CG=3,∴GH=CG=.故答案为:.三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)【解答】解:(1)(﹣2a)3﹣(﹣a)•(3a)2=﹣8a3﹣(﹣a)•9a2=﹣8a3+9a3=a3;(2)(2a﹣3b)2﹣4a(a﹣2b)=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2.18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+30【解答】解:原式=•=,当x=()﹣1+30=3+1=4时,原式==2.19.(8分)解分式方程:+=1.【解答】解:去分母得:x2﹣x﹣2=x2﹣3x,解得:x=1,经检验x=1是分式方程的解.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.【解答】解:AE=CD,AC=BC,∴EC=BD;∵△ABC为等边三角形,∴∠C=∠ABC=60°,AB=BC,在△BEC与△ADB中,,∴△BEC≌△ADB(SAS),∴∠EBC=∠BAD;∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∵∠BPQ是△ABP外角,∴∠ABP+∠BAP=60°=∠BPQ,又∵BQ⊥AD,∴∠PBQ=30°,∴PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.【解答】解:(1)设第一次购进x件文具,第二次就购进2x件文具,由题意得,=﹣2.5,解得:x=100,经检验,
本文标题:2019-2020学年天津市河北区八年级上册期末数学试卷(有答案)【优质版】
链接地址:https://www.777doc.com/doc-7339440 .html