您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 反比例函数实际问题应用专----题
反比例函数实际应用问题1.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)根据图像填空:AB的解析式为:_______________(0≤x<10)BC的解析式为:_______________(10≤x<25)CD的解析式为:_______________(x≥25)(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?2.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用正比例函数y=100x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:当x=5时,y=45,求k的值.(2)若依据某人甲的生理数据显示,当y≥80时肝部正被严重损伤,请问甲喝半斤低度白酒后,肝部被严重损伤持续多少时间?(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.3.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?(4)若小明在通电开机后随即进书房学习40分钟,中途出来接水,水温不低于50°的概率是_______.4.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第n天第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400250240200150125120销售量y(千克)304048608096100观察表中数据,发现这种海产品的每天销售量y(千克)是销售价格x(元/千克)的函数.且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?6.教室里的饮水机接通电源就进入自动程序,开机加热时水温上升,加热到100℃停止加热,水温开始下降,水温降至30℃,饮水机自动开始加热,重复上述程序.值日生小明7点钟到校后接通饮水机电源,在水温下降的过程中进行了水温检测,记录如下表:时间x7:007:027:057:077:107:147:20水温y30℃50℃80℃100℃70℃50℃35℃(1)在图中的平面直角坐标系,画出水温y关于饮水机接通电源时间x的函数图象;(2)借助(1)所画的图象,判断从7:00开始加温到水温第一次降到30℃为止,水温y和时间x之间存在怎样的函数关系?试求出函数关系并写出自变量x取值范围;(3)上午第一节下课时间为8:20,同学们刚下课时能不能喝到不超过50℃的水?请通过计算说明.(4)课间为10分钟,第二节课上课前能否喝到不超过50°的水?能持续多长时间?7.某学校小组利用暑假中前40天参加社会实践活动,参与了一家网上书店经营,了解到一种成本每本20元的书在x天销售量P=50-x.在第x天的售价每本y元,y与x的关系如图所示.已知当社会实践活动时间超过一半后.y=20+(1)请求出当1≤x≤20时,y与x的函数关系式,并求出第12天此书的销售单价;(2)这40天中该网点销售此书第几天获得的利润最大?最大的利润是多少?(3)若每天的利润不低于600元,则符合条件的天数分别是那些天?8.六⋅一儿童节,小文到公园游玩。看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A.B.C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等。爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米。问一共能种植多少棵花木?9.(2016•河北区三模)当a>0且x>0时,因为,所以≥0,从而≥2(当x=时取等号).记函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.(1)已知函数y=x+(x>0),当x=______时,y取得最小值为______;(2)已知函数y=x+(x>﹣1),则当x为何值时,y取得最小值,并求出该最小值.(3)已知某汽车的一次运输成本包含以下三个部分:一是固定费用360元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平面每千米的运输成本最低?最低是多少?10.知识迁移我们知道,函数y=a(x−m)2+n(a≠0,m0,n0)的图象是由二次函数y=ax2的图象向右平移m个单位,再向上平移n个单位得到;类似地,函数(k≠0,m0,n0)的图象是由反比例函数的图象向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).理解应用函数的图象可由函数的图象向右平移___个单位,再向上平移___个单位得到,其对称中心坐标为___.灵活应用如图,在平面直角坐标系xOy中,请根据所给的的图象画出函数的图象,并根据该图象指出,当x在什么范围内变化时,y≥−1?实际应用某老师对一位学生的学习情况进行跟踪研究,假设刚学完新知识时的记忆存留量为1,新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为;若在x=t(t≥4)时进行第一次复习,发现他复习后的记忆存留量是复习前的2倍(复习的时间忽略不计),且复习后的记忆存留量随x变化的函数关系为,如果记忆存留量为时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?作业:1.(2016春•惠山区期末)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)2.码头工人往一艘轮船上装载货物,装完货物所需时间y(h)与装载速度x(t/h)之间的函数关系如图.(1)这批货物的质量是多少?写出y与x之间的函数表达式;(2)中午12:00轮船到达目的地,以8t/h的速度卸货2小时后,接到气象部门预报,晚上8:00港口将受到台风影响必须停止卸货,那么按照原来的速度,在台风到来之前能否卸完这批货?请说明理由。如果要在台风到来前卸完这批货,那么卸货速度至少要提高百分之多少?3.如图①,小华设计了一个探索杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O的右侧用一个弹簧秤向下拉木杆,改变弹簧秤与点O的距离x(单位:厘米),观察弹簧秤的示数y(单位:牛)的变化情况,实验数据记录如下:x(单位:厘米)…1015202530…y(单位:牛)…3020151210…(1)把上表中(x,y)的各组对应值作为点的坐标,在图②所示的坐标系中描出相应的点,用平滑曲线连接这些点并观察所得的图象,猜测y与x之间的函数关系,并求出函数关系式;(2)当弹簧秤的示数为24牛时,弹簧秤与点O的距离是多少厘米?随着弹簧秤与O点的距离不断减小,弹簧秤的示数将发生怎样的变化?4.某检测,结果显示:所水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.要求该立即整改,在15天以内(含15天)达标.整改过程中,所水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该所水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?5.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:(1)二次函数和反比例函数的关系式。(2)弹珠在轨道上行驶的最大速度。(3)求弹珠离开轨道时的速度。6.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降。如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?7.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.8.某月食品加工厂以2万元引进一条新的生产加工线.已知加工这种食品的成本价每袋20元,物价部门规定:该食品的市场销售价不得高于每袋35元,若该食品的月销售量y(千袋)与销售单价x(元)之间的函数关系为:y=(月获利=月销售收入-生产成本-投资成本).(1)当销售单价定位25元时,该食品加工厂的月销量为多少千袋;(2)求该加工厂的月获利M(千元)与销售单价x(元)之间的函数关系式;(3)求销售单价在什么范围时,该加工厂是盈利的?并求出当销售单价为多少时,利润最大?最大利润是多少?
本文标题:反比例函数实际问题应用专----题
链接地址:https://www.777doc.com/doc-7351386 .html