您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 基于单片机电子钟的方案设计-(3)
0基于单片机的电子钟的设计学院:班级:姓名:学号:小组成员:姓名:学号:指导老师:i一、设计要求1、准确计时,以数字形式显示时、分、秒的时间。2、小时以24小时计时形式,分秒计时为60进位。3、校正时间功能,即能随意设定走时时间。4、设计5V直流电源,系统时钟电路、复位电路。二、设计方案和论证本次设计时钟电路,使用了ATC89C51单片机芯片控制电路,单片机控制电路简单且省去了很多复杂的线路,使得电路简明易懂,使用键盘键上的按键来调整时钟的时、分、秒,用一扬声器来进行定时提醒,同时使用汇编语言程序来控制整个时钟显示,使得编程变得更容易,这样通过四个模块:键盘、芯片、扬声器、LED显示即可满足设计要求。(一)总设计原理框图如下图所示:(二)设计方案的选择1.计时方案方案1:采用实时时钟芯片现在市场上有很多实时时钟集成电路,如DS1287、DS12887、DS1302等。这些实时时钟芯片具备年、月、日、时、分、秒计时功能和多点定时功能,计时数据的更新每秒自动进行一次,不需要程序干预。因此,在工业实时测控系统中多采用这一类专用芯片来实现实时时钟功能。微型控制器时钟电路声光报时校时输入数据显示ii方案2:使用单片机内部的可编程定时器。利用单片机内部的定时计数器进行中端定时,配合软件延时实现时、分、秒的计时。该方案节省硬件成本,但程序设计较为复杂。2.显示方案对于实时时钟而言,显示显然是另一个重要的环节。通常LED显示有两种方式:动态显示和静态显示。静态显示的优点是程序简单、显示亮度有保证、单片机CPU的开销小,节约CPU的工作时间。但占有I/O口线多,每一个LED都要占有一个I/O口,硬件开销大,电路复杂。需要几个LED就必须占有几个并行口,比较适用于LED数量较少的场合。当然当LED数量较多的时候,可以使用单片机的串行口通过移位寄存器的方式加以解决,但程序编写比较麻烦。LED动态显示硬件连接简单,但动态扫描的显示方式需要占有CPU较多的时间,在单片机没有太多实时测控任务的情况下可以采用。本系统需要采用6位LED数码管来分别显示时、分、秒,因数码管个数较多,故本系统选择动态显示方式。iii目录一.电路原理图和设计程序流程图......................................................11.单片机芯片选择方案.....................................................................12.时钟主程序流程图.........................................................................23.按键扫描程序流程图.....................................................................24.时钟程序流程图.............................................................................2二.设计方案分析..................................................................................31.时钟电路.........................................................................................32.复位电路.........................................................................................43.按键电路.........................................................错误!未定义书签。4.显示电路.........................................................................................45.LED的结构与原理..........................................................................9三.程序仿真........................................................................................10四.心得体会........................................................................................11附一:参考书目........................................................错误!未定义书签。附二:源程序..........................................................................................111一.电路原理图和设计程序流程图图一流程图系统由51系列单片机AT89C51、按键、数码管显示、电源等部分构成。单片机部分包括时钟电路、复位电路;按键部分能够实现对时间的调整、设定。三个按键的功能分别为:小时的调整,分钟的调整,复位。电源部分(USB充电器)可输出5V电压,给系统供电。1.单片机芯片选择方案方案一:AT89S51是一个低功耗,高性能CMOS8位单片机,片内含4kBytesISP(In-systemprogrammable)的可反复擦写1000次的Flash只读程序存储器。主要性能有:与MCS-51单片机产品兼容、全静态操作:0Hz~33Hz、三级加密程序存储器、32个可编程I/O口线、三个16位定时器/计数器、八个中断源、全双工UART串行通道、掉电后中断可唤醒、看门狗定时器、双数据指针、掉电标识符、易编程。方案二:AT89C52是一个低电压,高性能CMOS8位单片机,片内含8kbytes的可反复擦写的Flash只读程序存储器和256bytes的随机存取数据存储器(RAM)。主要性能有:兼容MCS51指令系统、32个双向I/O口、256x8bit内部RAM、3个16位可编程定时/计数器中断、时钟频率0-24MHz、2个串行中断、可编程UART串行通道、2个外部中断源、6个中断源、2个读写中断口线、3级加密位、低功耗空闲和掉电模式、软件设置睡眠和唤醒功能。单片机模块驱动模块按键模块LED显示模块时钟模块电源模块2从单片机芯片主要性能角度出发,本数字电子钟单片机芯片选择设计采用方案一。2.时钟主程序流程图时钟主程序流程图如图二所示。进入系统后首先实现程序的初始化,然后进入主程序,定时器开始计时,当定时器发生中断时刷新数码管同时显示,之后实现中断与显示的循环。图二时钟主程序流程图3.按键扫描程序流程图按键扫描程序流程图如图三所示。主程序进入键盘扫描程序后判断是否按下了P1.0。若是按下了P1.0为了去除抖动再进行确认是否按下P1.0,当确认按下了P1.0后判断按下P1.0的次数,若按了一次则进行秒调整,若按了两次则进行分调整,若按了三次则进行时调整。然后进入显示程序段进行显示刷新。图三按键扫描流程图4.时钟程序流程图3时钟程序流程如图四所示。设计中,采用51单片机的定时器的方式一定时,所以如图所示,当程序产生定时溢出中断时要重新赋初值。然后进行是否到一秒的判断,若到一秒则秒加一,若未到则直接退出中断。一秒到了加一以后进行是否秒到六十的判断,若秒到六十则秒清零,同时分加一,若秒未到六十则退出中断。分加一以后进行分是否到六十的判断,若未到六十则退出中断,若分到六十则分清零,同时小时加一。小时加一后进行小时是否到二十四的判断,若未到二十四则退出中断,若到二十四则清零,然后退出中断。图四时钟程序流程图二.设计方案分析1.时钟电路时钟电路由外接谐振器的时钟振荡器、时钟发生器及关断控制信号等组成。时钟振荡器是单片机的时钟源,时钟发生器对振荡器的输出信号进行二分频。CPU的时钟振荡信号有两个来源:一是采用内部振荡器,此时需要在XTAL1和XTAL2脚连接一只频率范围为0—33MHZ的晶体振荡或陶瓷振荡器及两只30pf电容。二是采用外部振荡,此时应将外部振荡器的输出信号接至XTAL1脚,将XTAL2脚浮空。利用单片机内部的定时功能来实现时钟的走时,通过编程实现每50毫秒产生一次中断,中断20次后,秒单元加1,秒单元加到60时,跳回到零再继续4加,同时分单元加1;当分单元加到60时,跳到零再继续加,同时时单元的个位加1,以次类推,从而实现秒、分、小时的走时。本次设计中采用的是内部振荡器,频率为12MHZ的晶体振荡器及30pf瓷片电容。2.复位电路复位是指在规定的条件下,单片机自动将CPU以及与程序运行相关的主要功能部件、I/O口等设置为确定初始状态的过程。如果电路参数不符合规定的条件或干扰导致单片机不能正确的复位,系统将无法进行正常的工作,因此,复位电路除了要符合厂家规定的参数外,还要滤除可能的干扰。AT89S51单片机内部有一个由施密特触发器等组成的复位电路。复位信号是从其9脚,即RST脚输入的。AT89S51单片机规定,当其处于正常工作基于51单片机的数字时钟的设计状态,且振荡器工作稳定后,在RST端有从高电平到低电平,且高电平时间大于两个机器周期的复位信号时,CPU将完成对系统的复位。有两点需要注意:一、复位信号是高电平有效,二、高电平的保持时间必须大于两个机器周期,可见高电平保持时间与振荡频率有关。上电复位是指在系统上电时,RST端自动产生复位所需要的信号将单片机复位。上电时,RST端高电平的维持时间取决于R(1k)和C(22uF)的值。要使单片机可靠的复位,设计中使其维持的时间足够长。(二)设计方案的选择1.计时方案方案1:采用实时时钟芯片现在市场上有很多实时时钟集成电路,如DS1287、DS12887、DS1302等。这些实时时钟芯片具备年、月、日、时、分、秒计时功能和多点定时功能,计时数据的更新每秒自动进行一次,不需要程序干预。因此,在工业实时测控系统中多采用这一类专用芯片来实现实时时钟功能。方案2:使用单片机内部的可编程定时器。利用单片机内部的定时计数器进行中端定时,配合软件延时实现时、分、秒的计时。该方案节省硬件成本,但程序设计较为复杂。2.显示方案5对于实时时钟而言,显示显然是另一个重要的环节。通常LED显示有两种方式:动态显示和静态显示。静态显示的优点是程序简单、显示亮度有保证、单片机CPU的开销小,节约CPU的工作时间。但占有I/O口线多,每一个LED都要占有一个I/O口,硬件开销大,电路复杂。需要几个LED就必须占有几个并行口,比较适用于LED数量较少的场合。当然当LED数量较多的时候,可以使用单片机的串行口通过移位寄存器的方式加以解决,但程序编写比较麻烦。LED动态显示硬件连接简单,但动态扫描的显示方式需要占有CPU较多的时间,在单片机没有太多实时测控任务的情况下可以采用。本系统需要采用6位LED数码管来分别显示时、分、秒,因数码管个数较多,故本系统选择动态显示方式。(三)硬件部分1、STC89C51单片机介绍STC89C51单片机是由深圳宏晶公司代理销售的一款MCU,是由美国设计生产的一种低电压、高性能CMOS8位单片机,片内含8kbytes的可反复写的FlashROM和128bytes的RAM,2个16位定时计数器[5]。STC89C51单片机内部主要包括累加器ACC(有时也简称为A)、程序状态字PSW、地址指示器DPTR、只读存储器ROM、随机存取存储器RAM、寄存器、并行I/O接口P0~P3、定时器/计数器、串行I/O接口以及定时控制逻辑电路等。这
本文标题:基于单片机电子钟的方案设计-(3)
链接地址:https://www.777doc.com/doc-7352529 .html