您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2019年河南省南阳市内乡县中考数学一模试卷解析版
2019年河南省南阳市内乡县中考数学一模试卷一、选择题(每小题3分,共30分)1.﹣3的绝对值是()A.﹣B.﹣3C.D.32.2019年春节联欢晚会在某网站取得了同时在线人数超34100000的惊人成绩,创下了全球单平台网络直播记录,则34100000用科学记数法可表示为()A.0.341×108B.3.41×107C.3.41×108D.34.1×1063.如图所示的几何体的主视图是()A.B.C.D.4.计算(﹣1)2+20﹣|﹣3|的值等于()A.﹣1B.0C.1D.55.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.天气预报“明天降水概率50%”,是指明天有一半的时间会下雨C.数据6,6,7,7,8的中位数与众数均为7D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,则甲的成绩更稳定6.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.7.关于x的一元二次方程x2+2x+3m=0有两个不相等的实数根,则m的取值范围是()A.m<B.m≤C.m>﹣D.m≤8.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是红球的概率是()A.B.C.D.9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.10.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3B.C.D.二、填空题(共5小题每小题3分共15分)11.在实数﹣5、﹣、0、中最大的一个数是12.将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为.13.已知x=3﹣2a是不等式2(x﹣3)<x﹣1的一个解,那么a的取值范围是.14.如图,在△ABC中,BA=BC,∠ABC=90°,AC=4,D为AC的中点,以D为圆心,DB为半径作圆心角为90°的扇形DEF,则图中阴影部分的面积为.15.如图,矩形ABCD中,AB=2,AD=4,点E在边BC上,把△DEC沿DE翻折后,点C落在C′处.若△ABC′恰为等腰三角形,则CE的长为.三、解答题(共8小题共75分)16.(8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.17.(9分)某校为了解本校九年级学生物理实验操作技能考查的备考情况,随机抽取该年级部分学生进行了一次测试,并根据中考标准按测试成绩分成A、B、C、D四个等级,绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取参加测试的学生为人,扇形统计图中A等级所对的圆心角是度;(2)请补全条形统计图和扇形统计图;(3)若该校九年级男生有300人,请估计该校九年级学生物理实验操作成绩为C等级的有人.18.(9分)如图,已知一次函数y=x+2的图象分别与x轴、y轴交于点A、C与反比列函数y=的图象在第一象限内交于点P,过点P作PB⊥x轴,垂足为B,且△ABP的面积为9.(1)点A的坐标为,点C的坐标为,点P的坐标为;(2)已知点Q在反比例函数y=的图象上,其横坐标为6,在x轴上确定一点M使得△PQM的周长最小,求出点M的坐标.19.(9分)如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=时,四边形ADFE为菱形;(3)当AB=时,四边形ACBF为正方形.20.(9分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)21.(10分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?22.(10分)我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.23.(11分)如图,在平面直角坐标系中,直线y=kx﹣与抛物线y=ax2+bx+交于点A、C,与y轴交于点B,点A的坐标为(2,0),点C的横坐标为﹣8.(1)请直接写出直线和抛物线的解析式;(2)点D是直线AB上方的抛物线上一动点(不与点A、C重合),作DE⊥AC于点E.设点D的横坐标为m.求DE的长关于m的函数解析式,并写出DE长的最大值;(3)平移△AOB,使平移后的三角形的三个顶点中有两个在抛物线上,请直接写出平移后的点A对应点A′的坐标.2019年河南省南阳市内乡县中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分1.【分析】利用绝对值的定义求解即可.【解答】解:﹣3的绝对值是3.故选:D.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.【分析】根据科学记数法的方法可以表示出题目中的数据,本题得以解决.【解答】解:34100000=3.41×107,故选:B.【点评】本题考查科学记数法,解答本题的关键是明确科学记数法的方法.3.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.【分析】根据零指数幂、乘方、绝对值三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+1﹣3=﹣1,故选:A.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、绝对值等考点的运算.5.【分析】根据必然事件的概念、可能性的意义、众数和中位数及方差的定义逐一判断即可得.【解答】解:A.“打开电视机,正在播放《新闻联播》”是随机事件,此选项错误;B.天气预报“明天降水概率50%”,是指明天有一半的可能性会下雨,此选项错误;C.数据6,6,7,7,8的中位数是7,众数是6和7,此选项错误;D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,由甲的方差小值甲的成绩更稳定,此选项正确;故选:D.【点评】本题主要考查概率的意义,解题的关键是掌握必然事件的概念、可能性的意义、众数和中位数及方差的定义与意义.6.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m不等式,求出m的取值范围.【解答】解:∵a=1,b=2,c=3m,∴△=b2﹣4ac=22﹣4×1×3m=4﹣12m>0,解得m<.故选:A.【点评】考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是红球的有2情况,利用概率公式即可求得答案.【解答】解:∵一个不透明的袋中,装有2个黄球、3个红球和5个白球中任意摸出一个球有10种等可能结果,其中摸出的球是红球的结果有3种,∴从袋中任意摸出一个球,是红球的概率;故选:C.【点评】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.9.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选:B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=.10.【分析】解法一:连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=3,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF的长;解法二:过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,判定△AEH∽△EMG,即可得到==,设MG=x,则EH=3x,DG=1+x=AH,利用勾股定理可得,Rt△AEH中,(1+x)2+(3x)2=32,进而得出EH==BN,CG=CM﹣MG==EN,FN=,再根据勾股定理可得,Rt△AEN中,EF==.【解答】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=∠EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.【点评】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.二、填空题(共5小题每小题3分共15分)11.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵>0>﹣>﹣5,∴在实数﹣5、﹣、0、中最大的一个数是.故答案为:.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负
本文标题:2019年河南省南阳市内乡县中考数学一模试卷解析版
链接地址:https://www.777doc.com/doc-7365992 .html