您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 第四章控制系统的瞬态响应(时间响应)
第四章控制系统的瞬态响应(时间响应)数学模型------采用不同的分析方法来分析系统的性能。经典控制理论中常用的工程方法有时域分析法-----时间响应(动态性能)根轨迹法频率特性法-----频率响应分析内容瞬态性能-----快速性稳态性能-----准确性稳定性能-----稳定性时域分析法---系统在典型输入信号的作用下,其输出响应随时间变化规律的方法。对于任何一个稳定的控制系统,输出响应含有瞬态分量和稳态分量。瞬态分量由于输入和初始条件引起的,随时间的推移而趋向消失的响应部分,它提供了系统在过渡过程中的各项动态性能的信息。稳态分量过渡过程结束后,系统达到平衡状态,它反映了系统的稳态性能或误差。①时域响应:系统在输入信号作用下,其输出随时间的变化过程,即为系统的时域响应。②瞬态响应:系统在输入信号的作用下其输出量从初始状态到稳定状态的响应过程。③稳态响应:系统在输入信号的作用下,系统在时间趋于无穷时的输出状态。稳态响应也称静态,瞬态响应也称为过渡过程在分析时域响应时,选择典型输入信号的好处:⑴数学处理简单。给定典型系统下的性能指标,便于分析、设计系统。⑵典型输入的响应往往可以作为分析复杂输入时的系统性能的依据。⑶便于进行系统辨识,确定未知环节的传递函数。总结:选择哪种函数作为典型输入信号,应视不同系统的具体工作条件而定。控制系统的输入量随时间变化→斜坡函数导弹发射→脉冲函数往复运动→正弦突然闭合断点→阶跃4-1、一阶系统的瞬态响应能够用一阶微分方程描述的系统称为一阶系统。它的典型形式是一阶惯性环节,即T为时间常数,T0()1()1OiXsXsTs一、一阶系统的单位阶跃响应进行拉氏反变换,得()1()ixtt1()iXss11111()111oTXsTsssTsssT1()1tToxtetxo(t)T5T斜率=1/T0.6322T3T4T0.6320.8650.950.9820.993当初始条件为零时,单位阶跃响应的变化函数是●单调上升的指数曲线;●1为稳态分量,为瞬态分量(衰减系数为1/T);●当t→∞时,瞬态分量衰减为零;●不会超过稳态值1。-----非周期响应。TtetC1)()0(tTte●响应曲线的初始(t=0时)斜率为.如果系统保持初始响应的变化速度不变,则当t=T时,输出量就能达到稳态值。●响应曲线的斜率是不断下降的,t=T,输出量c(t)从零上升到稳态值的63.2%;t=3T~4T,c(t)将分别达到稳态值的95%~98%。--------时间常数T反应了系统的响应速度,T越小,输出响应上升越快,响应过程的快速性也越好。T1斜率T11C(t)0.95T3T0.632图4-2一阶系统的单位阶跃响应由c(t)表达式可知,只有当t趋于无穷大时,响应的瞬态过程才能结束,在实际应用中,常以输出量达到稳态值的95%或98%的时间作为系统的响应时间(即调节时间),这时输出量与稳态值之间的偏差为5%或2%。系统单位阶跃响应曲线可用实验的方法确定,将测得的曲线与图4-2的曲线作比较,就可以确定该系统是否为一阶系统或等效为一阶系统。用实验的方法测定一阶系统的输出响应由零值开始到达稳态值的63.2%所需的时间,就可以确定系统的时间常数T。单位脉冲响应为由此可见,系统的单位脉冲响应就是系统闭环传递函数的拉氏变换。TsTTsSC1111)(TteTtC1)((t≥0)(4-4)0.368C(t)3TT1T1斜率21TC(t)T2Tt图4-3一阶系统的脉冲响应二、一阶系统的单位脉冲响应设系统的输入为单位脉冲函数r(t)=δ(t),其拉氏变换为R(s)=1,则输出的拉氏变换为●一阶系统的单位脉冲响应是单调下降的指数曲线,曲线的初始斜率为,输出量的初始值为。●t→∞时,输出量c(∞)→零,所以它不存在稳态分量。一般认为在t=3T~4T时过渡过程结束,故系统过度过程的快速性取决于T的值,T越小,系统响应的快速性也越好。●一阶系统的特权性由参数T来表述,响应时间为T;在t=0时,单位阶跃响应的斜率和单位脉冲响应的幅值均为1/T。21TT1式中,t-T为稳态分量为瞬态分量,当t→∞时,瞬态分量衰减到零。TsTsTssTssC11111)(22)1()(TtTteTtTeTttC(t≥0)(4-3)TtTC(t)r(t)=to图4-4一阶系统的单位斜坡响应TtTe三、一阶系统的单位斜坡响应设系统的输入为单位斜坡函数r(t)=t,其拉氏变换为则输出的拉氏变换为21)(ssR系统的响应从t=0时开始跟踪输入信号而单调上升,在达到稳态后,它与输入信号同速增长,但它们之间存在跟随误差。可见,当t→∞,误差→T,即:系统在进入稳态以后,在任一时刻,输出量c(t)将小于输入量r(t)一个T的值,时间常数T越小,系统跟踪斜坡输入信号的稳态误差也越小。)1()()()(TteTtctrteTtet)(lim由上可见,系统对输入信号导数的响应,等于系统对输入信号响应的导数。而系统对输入信号积分的响应,等于系统对原输入信号响应的积分。积分常数由初始条件确定。这是线性定常系统的一个重要特性。4-3二阶系统的瞬态响应用二阶微分方程描述的系统称为二阶系统。从物理上讲,二阶系统总包含两个贮能源,能量在两个元件间交换,引起系统具有往复振荡的趋势。当阻尼不够充分大时,系统呈现出振荡的特性,所以二阶系统也称为二阶振荡环节。二阶系统的典型传函:222()()2oninnXsXsss---阻尼比,n--无阻尼自然频率二阶系统的典型传递函数形式:其中,22()1()21oiXsXsTsTs1nT222()()2oninnXsXsss一、二阶系统的单位阶跃响应1、0<ξ<1,称为欠阻尼。----阻尼自然频率。21,21nnndsjj2()()onindndXsXssjsj21dn()1ixt1()iXss22222()1()()()1onoiindndnnndndXsXsXsXssjsjsssss2()1cossin1nnttoddxtetet即2()1cossin1nnttoddxtetet22()11cossin1ntoddexttt221()1sinarctan1ntodexttt≥0当0<ξ<1时,二阶系统的单位阶跃响应是以ωd为角频率的衰减振动。随着ξ的减小,其振荡幅值加大。221()1sinarctan1ntodextt2、当ξ=1时,称为临界阻尼。此时,二阶系统的极点是二重根。可表示为:22()()oninXsXss221()nonXsss211nnnsss222()()2oninnXsXsss进行拉氏反变换得:t≥0可见,系统没有超调。()1nnttonxtteetxo(t)3、当ξ1时,称为过阻尼。此时,二阶系统的极点是两个负实根。可表示为:222()()11oninnnnXsXsss2222222221()1111211211111nonnnnnnnnXsssssss进行拉氏反变换得:21221()1211ntoxte21221211nte其响应曲线如图:系统没有超调,且过渡过程时间较长。txo(t)4、当ξ=0时,称为零阻尼二阶系统的极点为一对共轭虚根。其传递函数可表示为:t≥0222()()oninXsXss2222211()nonnsXsssss()1cosonxtt其响应曲线如图。系统称为等幅振荡(无阻尼的结果)。0125、当ξ0时,称为负阻尼。其分析方法与以上类似,只是其响应表达式的各指数相均变为正指数,故随时间t→∝,其输出xo(t)→∝,其单位阶跃响应是发散。txo(t)txo(t)总结:单位阶跃系统的响应曲线与特征方程根的关系。阻尼比:ζ由大到小到零到负。对根的影响:左半平面的从左到右直到虚轴,直到右半平面。对响应曲线影响:无振荡→振荡→等幅振荡→发散由图P49可知:二阶系统的单位阶跃响应随着阻尼比的减小,其振荡特性愈剧烈,但仍为衰减振荡。当ξ=0时,达到等幅振荡。二、二阶系统的单位脉冲响应∴输入为单位脉冲:R(s)=122222222()2nnnnnnnCssss22222111nnnns根据ξ的值的不同有不同的输出:(1)欠阻尼情况(0<ξ<1)对于上式进行拉氏反变换,可得系统的单位脉冲响应为:2()nndndCssjsj2()sin1ntndctet(2)临界阻尼情况(ξ=1)对上式进行拉氏反变换:22()nnCss2()ntnctte(3)过阻尼情况(ξ1)对上式进行拉氏反变换:222()11nnnnnCsss122()21ptptnctee211np221np二阶系统的脉冲响应也可由二阶系统的单位阶跃响应求导后得到。4-4、二阶系统的瞬态响应指标一、瞬态响应指标评价一个系统的优劣,总是用一定的性能指标来衡量的。性能指标可以在时域里提出,也可以在频域里提出。时域里的性能指标比较直观。对于具有贮能元件的系统(即大于或等于一阶的系统)受到输入信号作用时,一般不是立即反应,总是表现出一定的过渡过程。瞬态响应指标是在欠阻尼二阶系统单位阶跃响应的波形基础上给出的。strtpt)(h)(9.0h)(5.0h)(1.0hdttXo(t)1、定义:①上升时间:响应曲线从零时刻到首次到达稳态值所需的时间,即响应曲线从零上升到稳态值所需的时间。有些系统没有超调,理论上到达稳态值时间需要无穷大。因此,人们也将上升时间定义为响应曲线从稳态值的10%上升到稳态值的90%所需要的时间。②峰值时间:响应曲线从零时刻上升到第一个峰值所需要的时间。ptrtstrtpt)(h)(9.0h)(5.0h)(1.0hdttXo(t)③最大超调量:响应曲线的最大峰值与稳态值的差,即或用百分数表示的最大超调量有时也用%表示。pM()()popoMxtx()()(%)100%()opopoxtxMx(%)pM④调整时间:响应曲线达到并永远保持在误差范围±Δ%内所需的时间。⑤振荡次数N:在调整时间内响应曲线振荡的次数。在以上各性能指标中:、和反应系统快速性;和N反应系统的平稳性。stststpMrtpt2、二阶系统的瞬态响应指标研究二阶系统最重要的是研究欠阻尼情况。二阶系统:其极点:222()()2oninnXsXsss21,21nnndsjj①求上升时间:将代入上式得:(n=0,1,2…)rt221()1sin(arctan)1ntodextt()1orxt21sinarctan0drt21arctandrtnn=1,21arctandrt211(arctan)rddt②求峰值时间:响应曲线从零时刻上升到第一个峰值所需要的时间。即pt2()1sin1nt
本文标题:第四章控制系统的瞬态响应(时间响应)
链接地址:https://www.777doc.com/doc-736674 .html