您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 八年级数学上册第十四章整式的乘法与因式分解复习教案新版新人教版
14.1.1同底数幂的乘法教学目的:1、能归纳同底数幂的乘法法则,并正确理解其意义;2、会运用同底数幂的乘法公式进行计算,对公式中字母所表示“数”的各种可能情形应有充分的认识,并能与加减运算加以区分;了解公式的逆向运用;教学重点:同底数幂的乘法法则难点:底数的不同情形,尤其是底数为多项式时的变号过程一、创设情境,激发求知欲课本第页的引例二、复习提问1.乘方的意义:求n个相同因数a的积的运算叫乘方2.指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、讲授新课1.(课本页问题)利用乘方概念计算:1014×103.2、计算观察,探索规律:完成课本第141页的“探索”,学生“概括”am×an=…=am+n;3、观察上式,找出其中包含的特征:左边的底数相同,进行乘法运算;右边的底数与左边相同,指数相加4、归纳法则:同底数的幂相乘,底数不变,指数相加。三、实践应用,巩固创新例1、计算:(1)x2·x5(2)a·a6(3)2×24×23(4)xm·x3m+1练习:1.课本第页:(学生板演过程,写出中间步骤以体现应用法则)2.随堂巩固:下面计算否正确?若不正确请加以纠正。①a6·a6=2a6②a2+a4=a6③a2·a4=a8例2、计算:要点指导:底数中负号的处理;能化为同底数幂的数字底数的处理;多项式底数及符号的处理。例3、(1)填空:⑴若xm+n×xm-n=x9;则m=;⑵2m=16,2n=8,则2m+n=。四、归纳小结,布置作业小结:1、同底数幂相乘的法则;2、法则适用于三个以上的同底数幂相乘的情形;3、相同的底数可以是单项式,也可以是多项式;4、要注意与加减运算的区别。教学反思14.1.2幂的乘方教学目标:1、经历探索幂的乘方的运算性质的过程,进一步体会幂的意义;2、了解幂的乘方的运算性质,并能解决一些实际问题.教学重点:幂的乘方的运算性质及其应用.教学难点:幂的运算性质的灵活运用.一:知识回顾1.讲评作业中出现的错误2.同底数幂的乘法的应用的练习二:新课引入探究:根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:(1)(32)3=32×32×32=3﹝﹞(2)(a2)3=a2·a2·a2=a﹝﹞(3)(am)3=am·am·am=a﹝﹞(4)(am)n===amn.观察结果,发现幂在进行乘方运算时,可以转化为指数的乘法运算.引导学生归纳同底数幂的乘法法则:幂的乘方,底数不变,指数相乘.即:(am)n=amn(m、n都是正整数).二、知识应用例题:(1)(103)5;(2)(a4)4;(3)(am)2;(4)-(x4)3;说明:-(x4)3表示(x4)3的相反数练习:课本第页(学生黑板演板)补充例题:(1)(y2)3·y(2)2(a2)6-(a3)4(3)(ab2)3(4)-(-2a2b)4说明:(1)(y2)3·y中既含有乘方运算,也含有乘法运算,按运算顺序,应先乘方,再做乘法,所以,(y2)3·y=y2×3·y=y6+1=y7;(2)2(a2)6-(a3)4按运算顺序应先算乘方,最后再化简.所以,2(a2)6-(a3)4=2a2×6-a3×4=2a12-a12=a12.三幂的乘方法则的逆用mnnmmnaaa)()(.(1)x13·x7=x()=()5=()4=()10;(2)a2m=()2=()m(m为正整数).练习:1.已知3×9n=37,求n的值.2.已知a3n=5,b2n=3,求a6nb4n的值.3.设n为正整数,且x2n=2,求9(x3n)2的值.四、归纳小结、布置作业小结:幂的乘方法则.教学反思14.1.3积的乘方教学目标:1、经历探索积的乘方的运算性质的过程,进一步体会幂的意义;2、了解积的乘方的运算性质,并能解决一些实际问题.教学重点:积的乘方的运算性质及其应用.教学难点:积的乘方运算性质的灵活运用.教学过程:一.创设情境,复习导入1.前面我们学习了同底数幂的乘法、幂的乘方这两个运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:(1)(2)(3)(4)2.探索新知,讲授新课(1)(3×5)7——积的乘方=)53(7)53()53()53(个——幂的意义=37)333(个×57)555(个——乘法交换律、结合律=37×57;——乘方的意义(2)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()(3)(a2b3)3=(a2b3)·(a2b3)·(a2b3)=(a2·a2·a2)·(b3·b3·b3)=a()b()(4)(ab)n=abnababab个)()()(——幂的意义=anaaaa个)(·bnbbbb个)(——乘法交换律、结合律=anbn.——乘方的意义由上面三个式子可以发现积的乘方的运算性质:积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘.即:(ab)n=an·bn二、知识应用,巩固提高例题3计算(1)(2a)3;(2)(-5b)3;(3)(xy2)2;(4)(-2/3x3)4.(5)(-2xy)4(6)(2×103)2说明:(5)意在将(ab)n=anbn推广,得到了(abc)n=anbncn判断对错:下面的计算对不对?如果不对,应怎样改正?①②③练习:课本第页三.综合尝试,巩固知识补充例题:计算:(1)(2)四.逆用公式:baabnnn)(,即)(abbannn预备题:(1)(2)例题:(1)0.12516·(-8)17;(2)20032004532135(2)已知2m=3,2n=5,求23m+2n的值.(注解):23m+2n=23m·22n=(2m)3·(2n)2=33·52=27×25=675.四、归纳小结、五、布置作业六、教学反思14.1.4整式的乘法(单项式乘以单项式)教学目标:经历探索单项式与单项式相乘的运算法则的过程,会进行整式相乘的运算。教学重点:单项式与单项式相乘的运算法则的探索.教学难点:灵活运用法则进行计算和化简.教学过程:一.复习巩固:同底数幂,幂的乘方,积的乘方三个法则的区分。二.提出问题,引入新课(课本引例):光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?(1)怎样计算(3×105)×(5×102)?计算过程中用到哪些运算律及运算性质?(2)如果将上式中的数字改为字母,比如ac5•bc2怎样计算这个式子?说明:(3×105)×(5×102),它们相乘是单项式与单项式相乘.ac5•bc2是两个单项式ac5与bc2相乘,我们可以利用乘法交换律,结合律及同底数幂的运算性质来计算:ac5•bc2=(a•b)•(c5•c2)=abc5+2=abc7.三.单项式乘以单项式的运算法则及应用单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例4(课本例题)计算:(学生黑板演板)(1)(-5a2b)(-3a);(2)(2x)3(-5xy2).练习1(课本)计算:(1)3x25x3;(2)4y(-2xy2);(3)(3x2y)3•(-4x);(4)(-2a)3(-3a)2.练习2(课本)下面计算的对不对?如果不对,应当怎样改正?(1)3a3•2a2=6a6;(2)2x2•3x2=6x4;(3)3x2•4x2=12x2;(4)5y3•y5=15y15.四.巩固提高(补充例题):1.(-2x2y)·(1/3xy2)2.(-3/2ab)·(-2a)·(-2/3a2b2)3.(2×105)2·(4×103)4.(-4xy)·(-x2y2)·(1/2y3)5.(-1/2ab2c)2·(-1/3ab3c2)3·(12a3b)6.(-ab3)·(-a2b)37.(-2xn+1yn)·(-3xy)·(-1/2x2z)8.-6m2n·(x-y)3·1/3mn2·(y-x)2五.小结作业方法归纳:(1)积的系数等于各系数的积,应先确定符号。(2)相同字母相乘,是同底数幂的乘法。(3)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式丢掉。(4)单项式乘法法则对于三个以上的单项式相乘同样适用。(5)单项式乘单项式的结果仍然是单项式。作业:教学反思14.1.4整式的乘法(单项式乘以多项式)教学目标:经历探索单项式与多项式相乘的运算法则的过程,会进行整式相乘的运算。教学重点:单项式与多项式相乘的运算法则的探索.教学难点:灵活运用法则进行计算和化简.教学过程:一.复习旧知1.单项式乘单项式的运算法则2.练习:9x2y3·(-2xy2)(-3ab)3·(1/3abz)3.合并同类项的知识二、问题引入,探究单项式与多项式相乘的法则(课本内容):三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a、b、c.你能用不同的方法计算它们在这个月内销售这种商品的总收入吗?学生独立思考,然后讨论交流.经过思考可以发现一种方法是先求出三家连锁店的总销量,再求总收入,为:m(a+b+c).另一种计算方法是先分别求出三家连锁店的收入,再求它们的和,即:ma+mb+mc.由于上述两种计算结果表示的是同一个量,因此m(a+b+c)=ma+mb+mc.学生归纳:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.引导学生体会:单项式与多项式相乘,就是利用乘法分配律转化为单项式与单项式相乘,三.讲解例题1.例题5(课本)计算:(1)(-4x2)(3x+1);(2)ababab21)232(22.补充例题1:化简求值:(-3x)2-2x(x+3)+x·x+2x·(-4x+3)+2007其中:x=2008练习:课本页3.补充练习:计算1.2ab(5ab2+3a2b);2.(32ab2-2ab)·21ab;3.-6x(x-3y);4.-2a2(21ab+b2).5.(-2a2)·(1/2ab+b2)6.(2/3x2y-6xy)·1/2xy27.(-3x2)·(4x2-4/9x+1)83ab·(6a2b4-3ab+3/2ab3)9.1/3xny·(3/4x2-1/2xy-2/3y-1/2x2y)10.(-ab)2·(-3ab)2·(2/3a2b+a3·a2·a-1/3a)四.小结归纳布置作业:教学反思14.1.4整式的乘法(多项式乘以多项式)教学目标:经历探索多项式与多项式相乘的运算法则的过程,会进行整式相乘的运算.教学重点:多项式与多项式相乘的运算法则的探索教学难点:灵活运用法则进行计算和化简.教学过程:一.复习旧知讲评作业二.创设情景,引入新课(课本)如图,为了扩大街心花园的绿地面积,把一块原长a米、宽m米的长方形绿地,增长了b米,加宽了n米.你能用几种方法求出扩大后的绿地面积?一种计算方法是先分别求出四个长方形的面积,再求它们的和,即(am+an+bm+bn)米2.另一种计算方法是先计算大长方形的长和宽,然后利用长乘以宽得出大长方形的面积,即(a+b)(m+n)米2.mnabbnbmaman由于上述两种计算结果表示的是同一个量,因此(a+b)(m+n)=am+an+bm+bn.教师根据学生讨论情况适当提醒和启发,然后对讨论结果(a+b)(m+n)=am+an+bm+bn进行分析,可以把m+n看做一个整体,运用单项式与多项式相乘的法则,得(a+b)(m+n)=a(m+n)+b(m+n),再利用单项式与多项式相乘的法则,得a(m+n)+b(m+n)=am+an+bm+bn.学生归纳:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加.三、应用提高
本文标题:八年级数学上册第十四章整式的乘法与因式分解复习教案新版新人教版
链接地址:https://www.777doc.com/doc-7382233 .html