您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2020年高考文科数学一轮复习导学案第10章算法初步统计统计案例
第一节算法与程序框图、基本算法语句[基础梳理]1.算法算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.程序框图(1)程序框图的定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常,程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带有方向箭头,按照算法进行的顺序将程序框连接起来.(2)程序框图中图形符号的意义图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框○连接点连接程序框图的两部分3.三种基本逻辑结构及相应语句名称示意图相应语句顺序结构①输入语句:INPUT“提示内容”;变量②输出语句:PRINT“提示内容”;表达式③赋值语句:变量=表达式条件结构IF条件THEN语句体ENDIFIF条件THEN语句体1ELSE语句体2ENDIF循环结构当型循环结构WHILE条件循环体WEND直到型循环结构DO循环体LOOPUNTIL条件1.三种基本逻辑结构的适用情境(1)顺序结构:要解决的问题不需要分类讨论.(2)条件结构:要解决的问题需要分类讨论.(3)循环结构:要解决的问题要进行许多重复的步骤,且这些步骤之间有相同的规律.2.循环结构的两个形式的区别(1)当型循环结构:先判断是否满足条件,若满足条件,则执行循环体.(2)直到型循环结构:先执行循环体,再判断是否满足条件,直到满足条件时结束循环.3.理解赋值语句要注意的三点(1)赋值语句中的“=”称为赋值号,与等号的意义不同.(2)赋值语句的左边只能是变量的名字,而不能是表达式.(3)对于同一个变量可以多次赋值,变量的值始终等于最近一次赋给它的值,先前的值将会被替换.[四基自测]1.某居民区的物业公司按月向居民收取卫生费,每月收费方法是:4人和4人以下的住户,每户收取6元;超过4人的住户,每超出1人加收1.1元,相应收费系统的程序框图如图所示,则①处应填()A.y=6+1.1xB.y=15+1.1xC.y=6+1.1(x-4)D.y=15+1.1(x-4)答案:C2.如图所示的程序框图的运行结果是()A.2B.2.5C.3.5D.4答案:B3.阅读下边的程序框图,运行相应的程序,则输出i的值为()A.2B.3C.4D.5答案:C4.(2017·高考全国卷Ⅱ)执行如图所示的程序框图,如果输入的a=-1,则输出的S=()A.2B.3C.4D.5答案:B高考总复习数学(文)第十章算法初步、统计、统计案例5.已知函数y=lg|x-3|,如图所示程序框图表示的是给定x值,求其相应函数值y的算法,请将该程序框图补充完整,其中①处应填________,②处应填________.答案:x<3?y=lg(x-3)考点一求运行后的输出结果◄考基础——练透角度1输出计算结果[例1](1)(2016·高考全国卷Ⅲ)执行如图所示的程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.6解析:运行程序框图,第1次循环,a=2,b=4,a=6,s=6,n=1;第2次循环,a=-2,b=6,a=4,s=10,n=2;第3次循环,a=2,b=4,a=6,s=16,n=3;第4次循环,a=-2,b=6,a=4,s=20,n=4,结束循环,故输出的n=4.答案:B(2)(2018·高考天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1B.2C.3D.4解析:输入N的值为20,第一次执行条件语句,N=20,i=2,Ni=10是整数,∴T=0+1=1,i=3<5;第二次执行条件语句,N=20,i=3,Ni=203不是整数,∴i=4<5;第三次执行条件语句,N=20,i=4,Ni=5是整数,∴T=1+1=2,i=5,此时i≥5成立,∴输出T=2.故选B.角度2输出运算关系[例2]某流程图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=|x|xC.f(x)=ex-e-xex+e-xD.f(x)=1+sinx+cosx1+sinx-cosx解析:由框图可知输出函数为奇函数且存在零点,依次判断各选项,A为偶函数,B不存在零点,不符合,对于C,由于f(-x)=e-x-exe-x+ex=-f(x),即函数为奇函数,且存在零点为x=0,对于D,由于其定义域不关于原点对称,故其为非奇非偶函数,故选C.答案:C求程序框图运行结果的思路(1)要明确程序框图中的顺序结构、条件结构和循环结构.(2)要识别运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.1.(2019·河北石家庄模拟)当n=4时,执行如图所示的程序框图,则输出的S值为()A.9B.15C.31D.63解析:由程序框图可知,n=4,k=1,S=1,满足条件k≤4;执行循环体,S=3,k=2,满足条件k≤4;执行循环体,S=7,k=3,满足条件k≤4;执行循环体,S=15,k=4,满足条件k≤4;执行循环体,S=31,k=5,不满足条件k≤4,退出循环,输出S的值为31.故选C.答案:C2.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2xB.y=3xC.y=4xD.y=5x解析:运行程序,第1次循环得x=0,y=1,n=2,第2次循环得x=12,y=2,n=3,第3次循环得x=32,y=6,此时x2+y2≥36,输出x,y,满足C选项.答案:C考点二求输入的值◄考能力——知法[例3](1)(2017·高考全国卷Ⅲ)执行如图所示的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5B.4C.3D.2解析:S=0+100=100,M=-10,t=2,10091;S=100-10=90,M=1,t=3,9091,输出S,此时,t=3不满足t≤N,所以输入的正整数N的最小值为2,故选D.答案:D(2)《九章算术》是中国古代数学名著,体现了古代劳动人民的数学智慧,其中有一竹节容量问题,某老师根据这一问题的思想设计了如图所示的程序框图,若输出的m的值为35,则输入的a的值为()A.4B.5C.7D.11解析:起始阶段有m=2a-3,i=1,第一次循环,m=2(2a-3)-3=4a-9,i=2;第二次循环,m=2(4a-9)-3=8a-21,i=3;第三次循环,m=2(8a-21)-3=16a-45,i=4;接着计算m=2(16a-45)-3=32a-93,跳出循环,输出m=32a-93,令32a-93=35,得a=4.答案:A(2019·湖南郴州模拟)秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为3,每次输入a的值均为4,输出s的值为484,则输入n的值可为()A.6B.5C.4D.3解析:模拟程序的运行,可得x=3,k=0,s=0,a=4,s=4,k=1,不满足条件k>n;执行循环体,a=4,s=16,k=2,不满足条件k>n;执行循环体,a=4,s=52,k=3,不满足条件k>n;执行循环体,a=4,s=160,k=4,不满足条件k>n;执行循环体,a=4,s=484,k=5,由题意,此时应该满足条件k>n,退出循环,输出s的值为484,可得5>n≥4,所以输入n的值可为4.故选C.答案:C考点三完善程序框图◄考基础——练透[例4](1)(2018·高考全国卷Ⅱ)为计算S=1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+4解析:把各循环变量在各次循环中的值用表格表示如下.循环次数①②③…○50N0+110+11+130+11+13+15…0+11+13+15+…+199T0+120+12+140+12+14+16…0+12+14+16+…+1100S1-121-12+13-141-12+13-14+15-16…1-12+13-14+…+199-1100因为N=N+1i,由上表知i是1→3→5,…,所以i=i+2.故选B.答案:B(2)(2017·高考全国卷Ⅰ)如图所示的程序框图是为了求出满足3n-2n1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A1000和n=n+1B.A1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2解析:程序框图中A=3n-2n,故判断框中应填入A≤1000,由于初始值n=0,要求满足A=3n-2n1000的最小偶数,故执行框中应填入n=n+2,选D.答案:D解决此类问题,其关键点1.分两种循环直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环则是“先判断,后循环,条件满足时执行循环”.两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.2.理清所用变量(1)计数变量:用来记录某个事件发生的次数,如i=i+1.(2)累加变量:用来计算数据之和,如S=S+i.(3)累乘变量:用来计算数据之积,如p=p×i.(2019·许昌调研)如图给出的是计算12+14+…+1100的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是()A.i100,n=n+1B.i100,n=n+2C.i50,n=n+2D.i≤50,n=n+2解析:因为12,14,…,1100共50个数,所以算法框图应运行50次,所以变量i应满足i50,因为是求偶数的和,所以执行框图n满足n=n+2.故选C.逻辑推理、直观想象——传统文化中的程序框图的应用[例1](1)(2015·高考全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14解析:开始:a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,退出循环,输出a=2,故选B.答案:B(2)(2016·高考全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17D.34解析:由程序框图知,第一次循环:x=2,n=2,a=2,s=0×2+2=2,k=1;第二次循环:a=2,s=2×2+2=6,k=2;第三次循环:a=5,s=6×2+5=17,k=3.结束循环,输出s的值为17,故选C.答案:C[例2](1)(2019·湖北荆州七校2月联考)宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.2B.3C.4D.5解析:程序运行如下:n=1,a=5+52=152,b=4,a>b,继续循环;n=2,a=152+12×152=454,b=8,a>b,继续循环;n=3,a=454+12×454=1358,b=16,a>b,继续循环;n=4,a=1358+12×1358=40516,b=32,此时,a<b.输出n=4,故选C.答案:C(2)(2019·河南开封模拟)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度
本文标题:2020年高考文科数学一轮复习导学案第10章算法初步统计统计案例
链接地址:https://www.777doc.com/doc-7392873 .html