您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 首发北师大版七年级数学下第三章变量之间的关系32用关系式表示的变量间关系
3.2用关系式表示的变量间关系第三章变量之间的关系导入新课讲授新课当堂练习课堂小结1.能根据具体情景,用关系式表示变量间的关系,根据关系式解决相关问题;(重点)2.并会根据关系式求值,初步体会自变量和因变量的数值对应关系;(重点)3.通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,提高分析问题和解决问题的能力.(难点)学习目标复习巩固在“小车下滑的时间”中,1.支撑物的高度h和小车下滑的时间t都在变化,它们都是变量.其中小车下滑的时间t随支撑物的高度h的变化而变化,2.支撑物的高度h是自变量,3.小车下滑的时间t是因变量.导入新课情境导入游戏:数青蛙一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿;三只青蛙三张嘴,六只眼睛十二条腿;……1.青蛙的眼睛数和只数有关系吗?能用数学式表达吗?2.青蛙的腿数和只数有关系吗?能用数学式表达吗?这个游戏你能继续玩下去吗?探究确定一个三角形面积的量有哪些?DBCA三角形的底和高用关系式表示变量间的关系讲授新课如图,三角形ABC底边BC上的高是6厘米.当三角形的顶点C沿底边所在的直线向点B运动时,三角形的面积发生了怎样的变化?(1)在这个变化过程中,自变量和因变量分别是什么?三角形的底边长度是自变量,三角形的面积是因变量.(2)如果三角形的底边长为x(厘米),那么三角形的面积y(厘米2)可以表示为________.y=3x(3)当底边长从12厘米变化到3厘米时,三角形的面积从_____厘米2变化到_____厘米2.369可在对应输入框中输入数字进行计算归纳总结y=3x表示了三角形面积和三角形底边长之间的关系,它是变量y随x变化的关系式.注意:关系式是我们表示变量之间关系的另一种方法,利用关系式,如y=3x,我们可以根据任何一个自变量值求出相应的因变量的值.思考你还记得圆锥的体积公式是什么吗?其中的字母表示什么?hrV231rh变化中的圆锥hrrh底面半径不变高变高不变底面半径变圆锥随半径的动态变化.exe圆锥随高度的动态变化.exe双击图标查看如图,圆锥的高度是4厘米,当圆锥的底面半径由小到大变化时,圆锥的体积也随之发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?圆锥的底面半径的长度是自变量,圆锥的体积是因变量.做一做(2)如果圆锥底面半径为r(cm),那么圆锥的体积V(cm3)与r的关系式为________.(3)当底面半径由1cm变化到10cm时,圆锥的体积由cm3变化到cm3.234rV343400例1一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:时间t(s)1234…距离s(m)281832…写出用t表示s的关系式:________.方法总结:认真观察表中给出的t与s的对应值,分析s随t的变化而变化的规律,再列出关系式.典例精析s=2t2例2汽车在行驶过程中,由于惯性的作用刹车后仍将滑行一段距离才能停住,这段距离称为刹车距离.刹车距离是分析事故原因的一个重要因素.2562vs某型号的汽车在平整路面上的刹车距离sm与车速vkm/h之间有下列经验公式:(1)式中哪个量是常量?哪个量是变量?哪个量是自变量?哪个量是因变量?(2)当刹车时车速v分别是40、80、120km/h时,相应的滑行距离s分别是多少?256s,vvs.当v=40km/h时,s=6.25m;当v=80km/h时,s=25m;当v=120km/h时,s=56.25m.例3图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()A.y=4n-4B.y=4nC.y=4n+4D.y=n2解析:由图可知n=1时,圆点有4个,即y=4;n=2时,圆点有8个,即y=8;n=3时,圆点有12个,即y=12,∴y=4n.B你知道什么是“低碳生活”吗?“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳、特别是二氧化碳的排放量的一种方式.议一议(1)家居用电的二氧化碳排放量可以用关系式表示为_____________,其中的字母分别表示__________________________.(2)在上述关系式中,耗电量每增加1KW·h,二氧化碳排放量增加___________.当耗电量从1KW·h增加到100KW·h时,二氧化碳排放量从_________增加到_________.0.785kg78.5kg0.785kgy=0.785x二氧化碳排放量耗电量(3)小明家本月用电大约110kW·h、天然气20m3、自来水5t、油耗75L,请你计算一下小明家这几项的二氧化碳排放量.家居用电的二氧化碳:110×0.785=86.35(kg)开私家车的二氧化碳:75×2.7=202.5(kg)家用天然气的二氧化碳:20×0.19=3.8(kg)家用自来水的二氧化碳:5×0.91=4.55(kg)可在对应输入框中输入数字进行计算素材1.变量x与y之间的关系式是y=x2-3,当自变量x=2时,因变量y的值是()A.-2B.-1C.1D.2当堂练习C【解析】将x=2代入y=x2-3,得y=22-3=1.2.一块长为5米,宽为2米的长方形木板,现要在长边上截取一边长为x米的一小长方形(如图),则剩余木板的面积y(平方米)与x(米)之间的关系式为()A.y=2xB.y=10-2xC.y=5xD.y=10-5x【解析】由题意,有y=2(5-x),即y=10-2x.B3.如图是一个简单的数值运算程序,当输入x的值为1时,则输出的数值为____.【解析】根据程序,计算过程可以表示为:-x+3,所以当x=1时,原式=-1+3=2.4.在关系式S=40t中,当t=1.5时,S=____.【解析】把t=1.5代入S=40t中,得S=40×1.5=60.6025.如图,圆柱的底面直径是2cm,当圆柱的高hcm由大到小变化时,圆柱的体积V(cm3)随之发生变化.(1)在这个变化中,自变量和因变量各是什么?(2)写出圆柱的体积V与高h之间的关系式.自变量是圆柱的高,因变量是圆柱的体积.V==πh.22h2()5.如图,圆柱的底面直径是2cm,当圆柱的高hcm由大到小变化时,圆柱的体积V(cm3)随之发生变化.(3)当h由10cm变化到5cm时,V是怎样变化的?(4)当h=0时,V等于多少?此时表示什么?当h=10cm时,V=πh=10πcm3;当h=5cm时,V=πh=5πcm3.所以当h由10cm变化到5cm时,V从10πcm3变化到5πcm3.V=0,此时表示平面图形——直径为2cm的圆.5.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度x(℃)与华氏温度y(°F)之间存在的关系为:y=1.8x+32,如图所示:(1)用表格表示当x从-10到30(每次增加10),y的相应的值.解:(1)(2)某天,连云港的最高气温是8℃,悉尼的最高气温是91°F,问这一天悉尼的最高气温比连云港的最高气温高多少摄氏度(结果保留整数)?解:(2)y=91,则1.8x+32=91,所以有x≈33,33-8=25(℃).所以这一天悉尼的最高气温比连云港的高25℃.求变量之间关系式的“三途径”1.根据表格中所列的数据,归纳总结两个变量的关系式.2.利用公式写出两个变量之间的关系式,比如各类几何图形的周长、面积、体积公式等.3.结合实际问题写出两个变量之间的关系式,比如销量×(售价-进价)=利润等.课堂小结见《学练优》本课时练习课后作业
本文标题:首发北师大版七年级数学下第三章变量之间的关系32用关系式表示的变量间关系
链接地址:https://www.777doc.com/doc-7400744 .html