您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 大学课件 > 大学课件-集成电子技术基础教程-习题与习题解答-二篇1章
第一章题2.1.1(1)(172)10=(?)2(2)(0.8123)10=(?)2(3)(10101101.0101)2=(?)10(4)(3625)10=(?)8=(?)16(5)(0.172)8=(?)16=(?)2(6)(4CA)16=(?)2=(?)10解:(1)(172)10=(10101100)2(2)(0.8123)10=(011001)2(3)(10101101.0101)2=(173.3125)10(4)(3625)10=(7051)8=(E29)16(5)(0.172)8=(03D0)16=(0.00111101)2(6)(4CA)16=(10011001010)2=(1226)10题2.1.2完成下列数制和代码之间的转换(1)(468.32)10=(?)8421BCD=(?)余3码(2)(10010011.1001)8421BCD=(?)2解:(1)(468.32)10=(01000110100000110010)8421=(011110011011.01100101)余3码(2)(10010011.1001)8421BCD=(10111011110)2题2.1.3(1)x1=+10011;(2)x2=-01010;(3)x3=+0.1101(4)x4=-0.0101解:[X1]原=010011[X1]反=001100[X1]补=001101[X2]原=101010[X2]反=110101[X2]补=110110[X3]原=01101[X3]反=01101[X3]补=01101[X4]原=10101[X4]反=11010[X4]补=11011题2.1.41.))((CABABCA2.ACCBBAACCBBA解:1.ABCBCA+BCA+BA+C(A+B)(A+C)0000000000100010010001000111111110001111101011111100111111111111(2).ABCABCBACBCAACCBBABACBACACCBBA0001110000000000111000110101010101010110010111000011100110001110010011101010100101011100010101001111100000000000题2.1.5求下列函数的对偶式和反函数式(1)DCBADCABZ)((1(2)CBADDCBAZ2解:(1)Z1的对偶式为:DABCDACBZ)('1Z1的反函数式为:DCABDCABZ1(2)Z2的对偶式为:)('2CBDADBCAZZ2的反函数式为:))((2CBDADCBAZ题2.1.6试证明下列“异或”等式成立(1)CBACBACBA(2)BAABBA)()(解:(1)根据异或运算规则BABABABA可得CBACBACBA等式成立。(2)等式左边=BAABABBAABBAABBA)()(题2.1.7试从题2.1.7真值表写出L题表2.1.7ABCLABCL00001001001110100101110001101111解:ABCCBACBACBACBAfL),,(题2.1.8已知逻辑电路图如图题2.1.8图题2.1.8解:BABABABABABAfL))((),(ABBA0000111011102.1.9用代数法将下列函数化简成为最简“与—或”表达式(1)CDBACDBCDA(2)EFBEFBABDCAABDAAD(3))()(DACBADACBA(4)))()((EDEDCCBBCBA(5))(ABCAB(6)CBBCCBAABCA(7)BABABABA(8)CEAEAECAEBECEBA)((9)CABCBCDABCDADA)()((10)CBBA解:(1)CDBACDBCDA=CDBABACD)1((2)EFBBDCA(3)DACABCBA(4)CBA(5)AB(6)CA(7)BA(8)EAEBA(9)CDAB(10)BCBACA或CBCAAB题2.1.10(1)CABDACDABDCBAZ),,,(1(2)BCCBDADCAACDDCBAZ),,,(2解:(1)DCABDCBADCABDABC,,,或10121314,,,mmmm(2)10820,,,MMMM题2.1.11用卡诺图法将下列函数化简成为最简“与-或”(1)ABBABAZ(2)CBACBA≥1≥1≥111ABL(3)CABCBCDABCDADAZ)()((4)EACEAECAEBECEBAZ)((5))15,14,11,10,8,7,6,5,2,0(),,,(mDCBAZ(6))13,12,11,10,9,8,7,6,5,3,2,1(),,,(mDCBAZ(7)CBCBCACADCBAZ),,,((8)DCACBADCDCAABDABCDCBAZ),,,((9))14,11,10,9,8,6,4,3,2,1,0(),,,(mDCBAZ(10)DBDCACBDBADBADCBAZ)()(),,,(解:(1)BAZ1(2)12Z(3)CBZ3(4)EAEBAZ4(5)BDADBBCBAZ5(6)BACACADCZ6(7)CBBACAZ7或CBBACA(8)DAZ8BA01011110BCA0001011111110111111BCA000101111111001011100ABCD000101111110100000000000000111100ABCDE0000110111111100100010101101011111111111110000000000000000000000ABCD00010111111010111111111110000000ABCD00010111111010111111111001001100ABCD000101111110101111111101111000(9)DADCBZ9(10)CADABZ10题2.1.12用卡诺图法将下列具有约束条件的逻辑函数化简成为最简“与-或”(1))15,14,13,12,11,10()9,7,6,5,1(),,,(dmDCBAZ(2))11,4()6,5,2,1,0(),,,(dmDCBAZ(3))14,11,10,8,3()12,6,5,4,2,1,0(),,,(dmDCBAZ(4),),,,(DCBADBCADCBDCBAZ约束条件为0DC解:(1)BCDCZ1(2)DACAZ2(3)CADZ3(4)CABAZ4题2.1.13已知逻辑函数X和Y:DCBDCADCCABDCBAX),,,())()((),,,(DCADCBDCBADCBAY用卡诺图法求函数XYZ的最简“与-或”解:00ABCD00010111111010110101111011110000ABCD00010111111010111111111111000000ABCD00010111111010001110100100ABCD000101111110100111010000010000ABCD000101111110101110100111000ABCD000101111110100111000100ABCD000101111110101001110111111110×00ABCD000101111110100111001100000111=DCBADACDABDBCW题2.1.14已知逻辑函数DBADCBDBADCBAZ),,,(的简化表达式为DBDBDCBAZ),,,(,试问它至少有哪些无关项?解:可以从画出卡诺图后,从结合的结果得出无关项根据给出的结果至少有下面的四个最小项DABCDCABCDBACDBA,,,题2.1.15(1)用最少量的“与非”门实现))((CBACBAZ(2)用最少量的“或非”门实现函数CBCBAZ,(3)用最少量的“与-或-非”门实现函数DADCCBBAZ解:(1)将式子化简后可得CBCABACBCABAZ,也可以是另一种答案。(2)用卡诺图化简,包围“0”格,求最简的“和之积”表达式得:最简和之积式子为:CBACBACBACBAZ))((00ABCD0001011111101000100111010011000000ABCD000101111110100101011000001100&&&&&&&ABCZ≥1≥1≥1≥1≥1≥1ABCZ(3)用卡诺图包围“0”方格,求反函数的最简“与或”表达式如下:化简后的最简反函数“与或”式:ABDDCACBAZ,则“与—或—非”式为:ABDDCACBAZABC题2.1.16常用逻辑功能的描述方法有哪些?各有什么特点?解:常用逻辑功能的描述方法有:真值表法描述:明了,不会遗漏;表达式描述:简捷,方便;逻辑图描述:用逻辑符号表示,画成电路图,便于电路实现;卡诺图法描述:便于简化逻辑函数;波形图描述:时间关系明确。题2.117(上机题)已知一个四位二进制数为A4A3A2A1,试设计一个奇偶判别电路。当输入四位二进制数中1的个数为奇数时,输出为逻辑“1”;输入四位二进制数中1的个数为偶数时,输出为逻辑“0”。要求:(1)在Lattice公司的ISPSynario开发软件环境下,用ABEL-HDL语言描述该电路的逻辑功能;(2)给出输出逻辑函数的最简与-或表达式;(3)给出逻辑功能的仿真波形。解:(2);1&2&3&4!#1&2&3&!4#1&2&!3&4#1&2&!3&!4!#1&!2&3&4#1!&!2&3&!4!#1&!2&!3&!4!#1&!2&!3&!4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ&≥1DBAZ
本文标题:大学课件-集成电子技术基础教程-习题与习题解答-二篇1章
链接地址:https://www.777doc.com/doc-7420754 .html