您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 北京市海淀区2015-2016学年高一上期末数学试卷含答案解析
第1页(共15页)2015-2016学年北京市海淀区高一(上)期末数学试卷一、选择题:本大题共8小题,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|﹣1≤x<2},B={x|x≥1},则A∩B=()A.(1,2)B.[﹣1,2]C.[﹣1,1]D.[1,2)2.sin(﹣)的值为()A.1B.﹣1C.0D.3.若α是第二象限的角,P(x,6)为其终边上的一点,且sinα=,则x=()A.﹣4B.±4C.﹣8D.±84.化简=()A.cos20°B.﹣cos20°C.±cos20°D.±|cos20°|5.已知A(1,2),B(3,7),=(x,﹣1),∥,则()A.x=,且与方向相同B.x=﹣,且与方向相同C.x=,且与方向相反D.x=﹣,且与方向相反6.已知函数:①y=tanx,②y=sin|x|,③y=|sinx|,④y=|cosx|,其中周期为π,且在(0,)上单调递增的是()A.①②B.①③C.①②③D.①③④7.先把函数y=cosx的图象上所有点向右平移个单位,再把所得各点的横坐标缩短到原来的倍(纵坐标不变),得到的函数图象的解析式为()第2页(共15页)A.y=cos(2x+)B.y=cos(2x﹣)C.y=cos(x+)D.y=cos(x﹣)8.若m是函数f(x)=﹣2x+2的一个零点,且x1∈(0,m),x2∈(m,+∞),则f(x1),f(x2),f(m)的大小关系为()A.f(x1)<f(m)<f(x2)B.f(m)<f(x2)<f(x1)C.f(m)<f(x1)<f(x2)D.f(x2)<f(m)<f(x1)二.填空题:本大题共6小题,每空4分,共24分.把答案填写在题中横线上.9.若y=log2x>1,则x的取值范围是.10.若函数f(x)=x2+3x﹣4在x∈[﹣1,3]上的最大值和最小值分别为M,N,则M+N=.11.若向量=(2,1),=(1,﹣2),且m+n=(5,﹣5)(m,n∈R),则m﹣n的值为.12.如图,在平面四边形ABCD中,AC,BD相交于点O,E为线段AO的中点,若(λ,μ∈R),则λ+μ=.13.若函数f(x)=sin(ωx+φ)(其中ω>0)在(0,)上单调递增,且f()+f()=0,f(0)=﹣1,则ω=.14.已知函数y=f(x),若对于任意x∈R,f(2x)=2f(x)恒成立,则称函数y=f(x)具有性质P,(1)若函数f(x)具有性质P,且f(4)=8,则f(1)=;(2)若函数f(x)具有性质P,且在(1,2]上的解析式为y=cosx,那么y=f(x)在(1,8]上有且仅有个零点.第3页(共15页)三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.已知二次函数f(x)=x2+mx﹣3的两个零点为﹣1和n,(Ⅰ)求m,n的值;(Ⅱ)若f(3)=f(2a﹣3),求a的值.16.已知函数f(x)是定义在R上的奇函数,当x≥0时,函数f(x)=2x﹣1(Ⅰ)求当x<0时,f(x)的解析式;(Ⅱ)若f(a)≤3,求a的取值范围.17.已知函数f(x)=2sin(2x﹣).(Ⅰ)求函数f(x)的单调递增区间与对称轴方程;(Ⅱ)当x∈[0,]时,求函数f(x)的最大值与最小值.18.如果f(x)是定义在R上的函数,且对任意的x∈R,均有f(﹣x)≠﹣f(x),则称该函数是“X﹣函数”.(Ⅰ)分别判断下列函数:①y=2x;②y=x+1;③y=x2+2x﹣3是否为“X﹣函数”?(直接写出结论)(Ⅱ)若函数f(x)=sinx+cosx+a是“X﹣函数”,求实数a的取值范围;(Ⅲ)已知f(x)=是“X﹣函数”,且在R上单调递增,求所有可能的集合A与B.第4页(共15页)2015-2016学年北京市海淀区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|﹣1≤x<2},B={x|x≥1},则A∩B=()A.(1,2)B.[﹣1,2]C.[﹣1,1]D.[1,2)【考点】交集及其运算.【专题】计算题;方程思想;综合法;集合.【分析】利用交集定义求解.【解答】解:∵集合A={x|﹣1≤x<2},B={x|x≥1},∴A∩B={x|1≤x<2}=[1,2).故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.2.sin(﹣)的值为()A.1B.﹣1C.0D.【考点】运用诱导公式化简求值.【专题】计算题;三角函数的求值.【分析】根据正弦函数为奇函数,利用奇函数的性质化简原式,变形后利用诱导公式及特殊角的三角函数值计算即可得到结果.【解答】解:sin(﹣)=﹣sin=﹣sin(4π+)=﹣sin=﹣1,故选:B.【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.3.若α是第二象限的角,P(x,6)为其终边上的一点,且sinα=,则x=()A.﹣4B.±4C.﹣8D.±8【考点】任意角的三角函数的定义.第5页(共15页)【专题】方程思想;转化思想;三角函数的求值.【分析】由题意与三角函数的定义可得:=,x<0,解出即可得出.【解答】解:∵α是第二象限的角,P(x,6)为其终边上的一点,且sinα=,∴=,x<0,解得x=﹣8.故选:C.【点评】本题考查了三角函数的定义,考查了推理能力与计算能力,属于基础题.4.化简=()A.cos20°B.﹣cos20°C.±cos20°D.±|cos20°|【考点】同角三角函数基本关系的运用.【专题】计算题;三角函数的求值.【分析】被开方数第二项利用诱导公式化简,再利用同角三角函数间的基本关系变形,利用二次根式的性质化简即可得到结果.【解答】解:∵cos20°>0,∴原式===|cos20°|=cos20°,故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.5.已知A(1,2),B(3,7),=(x,﹣1),∥,则()A.x=,且与方向相同B.x=﹣,且与方向相同C.x=,且与方向相反D.x=﹣,且与方向相反【考点】平面向量共线(平行)的坐标表示.【专题】计算题;规律型;函数思想;平面向量及应用.【分析】求出AB向量,利用斜率平行求出x,然后判断两个向量的方向即可.【解答】解:A(1,2),B(3,7),第6页(共15页)可得=(2,5)=(x,﹣1),∥,可得5x=﹣2,解得x=﹣.=(﹣,﹣1),与方向相反.故选:D.【点评】本题考查斜率共线,向量的坐标运算,是基础题.6.已知函数:①y=tanx,②y=sin|x|,③y=|sinx|,④y=|cosx|,其中周期为π,且在(0,)上单调递增的是()A.①②B.①③C.①②③D.①③④【考点】三角函数的周期性及其求法.【专题】计算题;数形结合;数形结合法;三角函数的图像与性质.【分析】利用三角函数的周期性,和三角函数的图象和性质对选项逐个分析即可.【解答】解:①函数y=tanx中ω=1,故周期T==π;因为利用正切函数的图象可得在(0,)上单调递增,所以A正确;③y=sin|x|为偶函数,根据图象判断它不是周期函数,所以B不正确;③由于函数y=|sinx|周期为•2π=π,利用正弦函数的图象可得在(0,)上单调递增,故正确;④y=|cosx|是周期为π的三角函数,利用余弦函数的图象可得在(0,)上单调递减,故不正确;故选:B.【点评】本题考查三角函数的周期性及其求法,考查了三角函数的图象和性质,熟练掌握各类三角函数的周期情况及求法是解决问题的关键,属于中档题.7.先把函数y=cosx的图象上所有点向右平移个单位,再把所得各点的横坐标缩短到原来的倍(纵坐标不变),得到的函数图象的解析式为()A.y=cos(2x+)B.y=cos(2x﹣)C.y=cos(x+)D.y=cos(x﹣)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;转化思想;分析法;三角函数的图像与性质.第7页(共15页)【分析】利用导公式以及函数y=Asin(ωx+φ)的图象变换规律,可以求得变换后的函数的解析式.【解答】解:将函数y=cosx的图象向右平移个单位长度,可得函数y=2cos(x﹣)的图象;再将所得图象的所有点的横坐标缩短到原来的倍(纵坐标不变),可得到的函数y=2cos(2x﹣)的图象,故选:B.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.8.若m是函数f(x)=﹣2x+2的一个零点,且x1∈(0,m),x2∈(m,+∞),则f(x1),f(x2),f(m)的大小关系为()A.f(x1)<f(m)<f(x2)B.f(m)<f(x2)<f(x1)C.f(m)<f(x1)<f(x2)D.f(x2)<f(m)<f(x1)【考点】函数零点的判定定理.【专题】计算题;数形结合;数形结合法;函数的性质及应用.【分析】由已知得m是函数g(x)=与h(x)=2x﹣2图象的一个交点的横坐标,由此利用数形结合思想能比较f(x1),f(x2),f(m)的大小关系.【解答】解:∵m是f(x)=﹣2x+2的一个零点,∴m是方程的一个解,即m是方程的一个解,∴m是函数g(x)=与h(x)=2x﹣2图象的一个交点的横坐标,如图所示,若x1∈(0,m),x2∈(m,+∞),则f(x2)=g(x2)﹣h(x2)<0=f(m),f(x1)=g(x1)﹣h(x1)>0=f(m),∴f(x2)<f(m)<f(x1).故选:D.第8页(共15页)【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意数形结合思想的合理运用.二.填空题:本大题共6小题,每空4分,共24分.把答案填写在题中横线上.9.若y=log2x>1,则x的取值范围是(2,+∞).【考点】指、对数不等式的解法.【专题】计算题;函数思想;数学模型法;不等式的解法及应用.【分析】直接利用对数函数的单调性求得x的取值范围.【解答】解:由y=log2x>1=log22,得x>2.∴x的取值范围是(2,+∞).故答案为:(2,+∞).【点评】本题考查对数不等式的解法,考查了对数函数的单调性,是基础题.10.若函数f(x)=x2+3x﹣4在x∈[﹣1,3]上的最大值和最小值分别为M,N,则M+N=8.【考点】二次函数的性质.【专题】函数思想;分析法;函数的性质及应用.【分析】求出f(x)的对称轴,可得区间[﹣1,3]为增区间,可得最值,即可得到M+m的值.【解答】解:函数f(x)=x2+3x﹣4的对称轴为x=﹣,区间[﹣1,3]在对称轴的右边,即有f(x)在区间[﹣1,3]递增,可得最小值m=f(﹣1)=﹣6;最大M=f(3)=14,可得M+m=8.故答案为:8.第9页(共15页)【点评】本题考查二次函数的最值的求法,注意讨论对称轴和区间的关系,考查运算能力,属于基础题.11.若向量=(2,1),=(1,﹣2),且m+n=(5,﹣5)(m,n∈R),则m﹣n的值为﹣2.【考点】平面向量的坐标运算.【专题】计算题;转化思想;综合法;平面向量及应用.【分析】由已知得(2m,m)+(n,﹣2n)=(2m+n,m﹣2n)=(5,﹣5),由此能求出m﹣n的值.【解答】解:∵向量=(2,1),=(1,﹣2),且m+n=(5,﹣5)(m,n∈R),∴(2m,m)+(n,﹣2n)=(2m+n,m﹣2n)=(5,﹣5),∴,解得m=1,n=3,∴m﹣n=﹣2.故答案为:﹣2.【点评】本题考查代数式的值的求法,是基础题,解题时要认真审题,注意向量的坐标运算法则的合理运用.12.如图,在平面四边形ABCD中,AC,BD相交于点O,E为线段AO的中点,若(λ,μ∈R),则λ+μ=.【考点】平面向量的基本定理及其意义.【专题】平面向量及应用.【分析】,,可得.由E为线段AO的中点,可得,再利用平面向量基本定理即可得出.【解答】解:∵,,∴,∵E为线段AO的中点,第10页(共15页)∴,∴,2
本文标题:北京市海淀区2015-2016学年高一上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7421048 .html