您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2020年天津市初二数学上期末试题及答案
2020年天津市初二数学上期末试题及答案一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣12.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°3.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-34.计算:(4x3﹣2x)÷(﹣2x)的结果是()A.2x2﹣1B.﹣2x2﹣1C.﹣2x2+1D.﹣2x25.在平面直角坐标系内,点O为坐标原点,(4,0)A,(0,3)B,若在该坐标平面内有以点P(不与点ABO、、重合)为一个顶点的直角三角形与RtABO全等,且这个以点P为顶点的直角三角形RtABO有一条公共边,则所有符合的三角形个数为()。A.9B.7C.5D.36.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1B.x=1C.x≠0D.x≠17.如图,已知△ABC中,∠A=75°,则∠BDE+∠DEC=()A.335°B.135°C.255°D.150°8.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两个面积相等的直角三角形9.如图,在△ABC中,CD平分∠ACB交AB于点D,DEAC于点E,DFBC于点F,且BC=4,DE=2,则△BCD的面积是()A.4B.2C.8D.610.如图,ABC是等边三角形,0,20BCBDBAD,则BCD的度数为()A.50°B.55°C.60°D.65°11.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b212.若代数式4xx有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠4二、填空题13.如果24xkx是一个完全平方式,那么k的值是__________.14.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为_____.15.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.16.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.17.已知等腰三角形的两边长分别为4和6,则它的周长等于_______18.因式分解:3x3﹣12x=_____.19.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;20.正六边形的每个内角等于______________°.三、解答题21.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.22.如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)试说明AE=CD;(2)若AC=10cm,求BD的长.23.如图,ABO与CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.24.如图,//ABCD,直线EF分别交AB、CD于E、F两点,BEF的平分线交CD于点G,若72EFG,求EGF的度数.25.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【详解】2.C解析:C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.3.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.4.C解析:C【解析】【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选C.【点睛】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.5.A解析:A【解析】【分析】根据题意画出图形,分别以OA、OB、AB为边、根据直角三角形全等的判定定理作出符合条件的三角形即可.【详解】如图:分别以OA、OB、AB为边作与Rt△ABO全等的三角形各有3个,则则所有符合条件的三角形个数为9,故选:A.【点睛】本题考查的知识点是直角三角形全等的判定和坐标与图形性质,解题关键是注意不要漏解.6.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.7.C解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC=360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.8.D解析:D【解析】【分析】【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.9.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DF=DE=2,∴1•124242BCDSBCDF;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.10.A解析:A【解析】【分析】利用等边三角形三边相等,结合已知BC=BD,易证ABD、CBD都是等腰三角形,利用等边对等角及三角形内角和定理即可求得BCD的度数.【详解】ABC是等边三角形,BCACAB,又BCBD,ABBD,20BADBDA00000018018020206080CBDBADBDAABC,BCBD,11(180)(18080)5022BCECBD,故选:A.【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.11.B解析:B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B12.D解析:D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.二、填空题13.±4【解析】【分析】这里首末两项是x和2的平方那么中间项为加上或减去x和2的乘积的2倍也就是kx由此对应求得k的数值即可【详解】∵是一个多项式的完全平方∴kx=±2×2⋅x∴k=±4故答案为:±4【解析:±4.【解析】【分析】这里首末两项是x和2的平方,那么中间项为加上或减去x和2的乘积的2倍也就是kx,由此对应求得k的数值即可.【详解】∵24xkx是一个多项式的完全平方,∴kx=±2×2⋅x,∴k=±4.故答案为:±4.【点睛】此题考查完全平方式,解题关键在于掌握计算公式.14.70°或40°或20°【解析】【分析】分三种情况:①当AC=AD时②当CD′=AD′时③当AC=AD″时分别根据等腰三角形的性质和三角形内角和定理求解即可【详解】解:∵∠B=50°∠C=90°∴∠B解析:70°或40°或20°【解析】【分析】分三种情况:①当AC=AD时,②当CD′=AD′时,③当AC=AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B=50°,∠C=90°,∴∠BAC=90°-50°=40°,如图,有三种情况:①当AC=AD时,∠ACD=()1180402??=70°;②当CD′=AD′时,∠ACD′=∠BAC=40°;③当AC=AD″时,∠ACD″=12∠BAC=20°,故答案为:70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.80°【解析】【分析】根据平行线的性质求出∠4再根据三角形内角和定理计算即可【详解】∵a∥b∴∠4=∠l=60°∴∠3=180°-∠4-∠2=80°故答案为80°【点睛】本题考查了平行线的性质三角形解析:80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.16.40°【解析】试题分析:延长DE交BC于F点根据两直线平行内错角相等可知ABC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40°解析:40°【解析】试题分析:延长DE交BC于F点,根据两直线平行,内错角相等,可知ABC=BFD=80°,由此可得100DFC,然后根据三角形的外角的性质,可得BCD=EDC-FDC=40°.故答案为:40°.17.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.18.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然
本文标题:2020年天津市初二数学上期末试题及答案
链接地址:https://www.777doc.com/doc-7425724 .html