您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高二数学直线与圆锥曲线同步测试1
梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站安陆一中高二数学同步测试直线与圆锥曲线(一)一、选择题1.斜率为1的直线l与椭圆42x+y2=1相交于A、B两点,则|AB|的最大值为()A.2B.554C.5104D.51082.抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有()A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0D.x1x2+x2x3+x3x1=03.(浙江)函数y=ax2+1的图象与直线y=x相切,则a=()(A)18(B)41(C)21(D)14.(上海)过抛物线xy42的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在5.(山东卷)设直线:220lxy关于原点对称的直线为l,若l与椭圆2214yx的交点为A、B、,点P为椭圆上的动点,则使PAB的面积为12的点P的个数为()(A)1(B)2(C)3(D)46.(全国卷Ⅰ)已知双曲线)0(1222ayax的一条准线为23x,则该双曲线的离心率为()(A)23(B)23(C)26(D)3327.(全国卷III)设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()(A)22(B)212(C)22(D)21梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站8.(湖南卷)已知双曲线22ax-22by=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为22a(O为原点),则两条渐近线的夹角为()A.30ºB.45ºC.60ºD.90º9.(福建卷)已知定点A、B且|AB|=4,动点P满足|PA|-|PB|=3,则|PA|的最小值是()A.21B.23C.27D.510.(广东卷)若焦点在轴上的椭圆2212xym的离心率为12,则m=()(A)3(B)32(C)83(D)23二、填空题11.已知两点M(1,45)、N(-4,-45),给出下列曲线方程:①4x+2y-1=0,②x2+y2=3,③22x+y2=1,④22x-y2=1,在曲线上存在点P满足|MP|=|NP|的所有曲线方程是_________.12.正方形ABCD的边AB在直线y=x+4上,C、D两点在抛物线y2=x上,则正方形ABCD的面积为_________.13.在抛物线y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________.三、解答题14.已知抛物线y2=2px(p>0),过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,且|AB|≤2p.(1)求a的取值范围.(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站15.已知中心在原点,顶点A1、A2在x轴上,离心率e=321的双曲线过点P(6,6).(1)求双曲线方程.(2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论.16.已知双曲线C的两条渐近线都过原点,且都以点A(2,0)为圆心,1为半径的圆相切,双曲线的一个顶点A1与A点关于直线y=x对称.(1)求双曲线C的方程.(2)设直线l过点A,斜率为k,当0<k<1时,双曲线C的上支上有且仅有一点B到直线l的距离为2,试求k的值及此时B点的坐标.17.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=210,求椭圆方程.梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站18.如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为4的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.19.已知双曲线C:2x2-y2=2与点P(1,2)(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点.(2)若Q(1,1),试判断以Q为中点的弦是否存在.20.如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.(1)求该弦椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站直线与圆锥曲线(一)参考答案一、选择题1..C2.B3.B4.B5.B6.A7.D8.D9.C10.B二、填空题11.解析:点P在线段MN的垂直平分线上,判断MN的垂直平分线于所给曲线是否存在交点.答案:②③④12.解析:设C、D所在直线方程为y=x+b,代入y2=x,利用弦长公式可求出|CD|的长,利用|CD|的长等于两平行直线y=x+4与y=x+b间的距离,求出b的值,再代入求出|CD|的长.答案:18或5013.解析:设所求直线与y2=16x相交于点A、B,且A(x1,y1),B(x2,y2),代入抛物线方程得y12=16x1,y22=16x2,两式相减得,(y1+y2)(y1-y2)=16(x1-x2).即21212116yyxxyykAB=8.故所求直线方程为y=8x-15.答案:8x-y-15=0三、解答题14.解:(1)设直线l的方程为:y=x-a,代入抛物线方程得(x-a)2=2px,即x2-2(a+p)x+a2=0∴|AB|=224)(42apa≤2p.∴4ap+2p2≤p2,即4ap≤-p2又∵p>0,∴a≤-4p.(2)设A(x1,y1)、B(x2,y2),AB的中点C(x,y),由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p,则有x=222,2212121axxyyypaxx=p.∴线段AB的垂直平分线的方程为y-p=-(x-a-p),从而N点坐标为(a+2p,0点N到AB的距离为papa22|2|从而S△NAB=2222224)(4221papppapa当a有最大值-4p时,S有最大值为2p2.梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站15.解:(1)如图,设双曲线方程为2222byax=1.由已知得321,16622222222abaeba,解得a2=9,b2=12.所以所求双曲线方程为12922yx=1.(2)P、A1、A2的坐标依次为(6,6)、(3,0)、(-3,0),∴其重心G的坐标为(2,2)假设存在直线l,使G(2,2)平分线段MN,设M(x1,y1),N(x2,y2).则有34912441089121089122121212122222121xxyyyyxxyxyx,∴kl=34∴l的方程为y=34(x-2)+2,由)2(3410891222xyyx,消去y,整理得x2-4x+28=0.∵Δ=16-4×28<0,∴所求直线l不存在.16.解:(1)设双曲线的渐近线为y=kx,由d=1|2|2kk=1,解得k=±1.即渐近线为y=±x,又点A关于y=x对称点的坐标为(0,2).∴a=2=b,所求双曲线C的方程为x2-y2=2.(2)设直线l:y=k(x-2)(0<k<1),依题意B点在平行的直线l′上,且l与l′间的距离为2.梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站设直线l′:y=kx+m,应有21|2|2kmk,化简得m2+22km=2.②把l′代入双曲线方程得(k2-1)x2+2mkx+m2-2=0,由Δ=4m2k2-4(k2-1)(m2-2)=0.可得m2+2k2=2③②、③两式相减得k=2m,代入③得m2=52,解设m=510,k=552,此时x=2212kmk,y=10.故B(22,10).17.解:设椭圆方程为mx2+ny2=1(m>0,n>0),P(x1,y1),Q(x2,y2)由1122nymxxy得(m+n)x2+2nx+n-1=0,Δ=4n2-4(m+n)(n-1)>0,即m+n-mn>0,由OP⊥OQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0,∴nmnnmn2)1(2+1=0,∴m+n=2①又2)210()(4nmmnnm2,将m+n=2,代入得m·n=43②由①、②式得m=21,n=23或m=23,n=21故椭圆方程为22x+23y2=1或23x2+21y2=1.18.解:由题意,可设l的方程为y=x+m,-5<m<0.由方程组xymxy42,消去y,得x2+(2m-4)x+m2=0①∵直线l与抛物线有两个不同交点M、N,∴方程①的判别式Δ=(2m-4)2-4m2=16(1-m)>0,解得m<1,又-5<m<0,∴m的范围为(-5,0)设M(x1,y1),N(x2,y2)则x1+x2=4-2m,x1·x2=m2,梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站∴|MN|=4)1(2m.点A到直线l的距离为d=25m.∴S△=2(5+m)m1,从而S△2=4(1-m)(5+m)2=2(2-2m)·(5+m)(5+m)≤2(35522mmm)3=128.∴S△≤82,当且仅当2-2m=5+m,即m=-1时取等号.故直线l的方程为y=x-1,△AMN的最大面积为82.19.解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.当l的斜率存在时,设直线l的方程为y-2=k(x-1),代入C的方程,并整理得(2-k2)x2+2(k2-2k)x-k2+4k-6=0(*)(ⅰ)当2-k2=0,即k=±2时,方程(*)有一个根,l与C有一个交点(ⅱ)当2-k2≠0,即k≠±2时Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k)①当Δ=0,即3-2k=0,k=23时,方程(*)有一个实根,l与C有一个交点.②当Δ>0,即k<23,又k≠±2,故当k<-2或-2<k<2或2<k<23时,方程(*)有两不等实根,l与C有两个交点.③当Δ<0,即k>23时,方程(*)无解,l与C无交点.综上知:当k=±2,或k=23,或k不存在时,l与C只有一个交点;当2<k<23,或-
本文标题:高二数学直线与圆锥曲线同步测试1
链接地址:https://www.777doc.com/doc-7439659 .html