您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 人教版高一数学必修一知识点总结
1人教版高一数学必修1知识点总结第一章集合与函数概念一、集合(一)集合有关概念1.集合的含义2.集合的中元素的三个特性:确定性、互异性、无序性3.集合的表示:(1)常用数集及其记法(2)列举法(3)描述法4、集合的分类:有限集、无限集、空集5.常见集合的符号表示:数集自然数集正整数集整数集有理数集实数集符号NN或NZQR(二)集合间的基本关系1.子集、真子集、空集;2.有n个元素的集合,含有2n个子集,2n-1个真子集;3.空集是任何集合的子集,是任何非空集合的真子集.(三)集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).设U是一个集合,A是U的一个子集,由U中所有不属于A的元素组成的集合,叫做U中子集A的补集(或余集)记作UCA,即CUA={|,}xxUxA且韦恩图示AB图1AB图2性质AA=AAΦ=ΦAB=BAABAABBAA=AAΦ=AAB=BAABAABB(CuA)(CuB)=Cu(AB)(CuA)(CuB)=Cu(AB)A(CuA)=UA(CuA)=Φ.二、函数(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.定义域:能使函数式有意义的实数x的集合称为函数的定义域.2.常用的函数表示法及各自的优点:○1解析法:必须注明函数的定义域;○2图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○3列表法:选取的自变量要有代表性,应能反映定义域的特征.优点:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值.求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;UA2(4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x的值组成的集合;(6)指数为零底不可以等于零;(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:(以下两点必须同时具备)(1)表达式相同(与表示自变量和函数值的字母无关);(2)定义域一致.求函数值域方法:(先考虑其定义域)(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟练掌握一次函数、二次函数、指数函数、对数函数的值域,它是求解复杂函数值域的基础.(3)求函数值域的常用方法有:直接法、换元法、配方法、分离常数法、判别式法、单调性法等.2.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据.(2)画法:描点法;图象变换法常用变换方法有三种:平移变换;对称变换;*伸缩变换.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射.记作“f(对应关系):A(原象集)B(象集)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数;(2)各部分的自变量的取值情况;(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(二)函数的性质1.函数的单调性(局部性质)(1)定义设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.定义的变形应用:如果对任意的12,xxD,且21xx有0)()(1212xxxfxf或者2121(()())()0fxfxxx,则函数)(xf在区间D上是增函数;如果对任意的12,xxD,且21xx有2121()()0fxfxxx或者2121(()())()0fxfxxx,则函数)(xf在区间D上是减函数.注意:函数的单调性是函数的局部性质.(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.3(3)函数单调区间与单调性的判定方法(A)定义法:○1任取x1,x2∈D,且x1x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.3.函数的解析表达式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:凑配法;待定系数法;换元法;消参法.如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)4.函数最大(小)值(1)利用二次函数的性质(配方法)求函数的最大(小)值;(2)利用图象求函数的最大(小)值;(3)利用函数单调性的判断函数的最大(小)值:函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b).第二章基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果axn,那么x叫做a的n次方根,其中n1,且n∈N*.负数没有偶次方根;0的任何次方根都是0,记作00n.4当n是奇数时,aann,当n是偶数时,)0()0(||aaaaaann2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*nNnmaaanmnm,)1,,,0(11*nNnmaaaanmnmnm0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)rsrsaaa(0,,)arsR;(2)()rsrsaa),,0(Rsra;(3)()rrrabab(0,)arR.(二)指数函数及其性质1.指数函数的概念:一般地,函数)1,0(aaayx且叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2.指数函数的图象和性质a10a1654321-1-4-224601654321-1-4-224601定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,)1a0a(a)x(fx且值域是)]b(f),a(f[(a1)或)]a(f),b(f[(0a1);(2)若0x,则1)x(f;)x(f取遍所有正数当且仅当Rx;(3)对于指数函数)1a0a(a)x(fx且,总有a)1(f.二、对数函数(一)对数的概念:一般地,如果Nax)1,0(aa,那么数x叫做以.a为底..N的对数,记作:Nxalog(a—底数,N—真数,Nalog—对数式)说明:○1注意底数的限制0a,且1a;○2xNNaaxlog.两个重要对数:○1常用对数:以10为底的对数Nlg;○2自然对数:以无理数71828.2e为底的对数的对数Nln.指数式与对数式的互化幂值真数ba=NlogaN=b5底数指数对数(二)对数的运算性质如果0a,且1a,0M,0N,那么:○1Ma(log·)NMalog+Nalog;○2NMalogMalog-Nalog;○3naMlognMalog)(Rn.注意:换底公式abbccalogloglog(0a,且1a;0c,且1c;0b).利用换底公式可得下面的结论:(1)bmnbanamloglog;(2)abbalog1log.(三)对数函数1、对数函数的概念:函数0(logaxya,且)1a叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:○1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:xy2log2,5log5xy都不是对数函数,而只能称其为对数型函数.○2对数函数对底数的限制:0a,且1a.2、对数函数的图象和性质:a10a132.521.510.5-0.5-1-1.5-2-2.5-11234567801132.521.510.5-0.5-1-1.5-2-2.5-112345678011定义域:(0,)定义域:(0,)值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)三、幂函数1.幂函数定义:一般地,形如xy)(Ra
本文标题:人教版高一数学必修一知识点总结
链接地址:https://www.777doc.com/doc-7446466 .html