您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019年永州中考数学试题及解析
永州市2019年初中学业水平考试数学(试题卷)温馨提示:1.本试卷包括试题卷和答题卡,考生作答时,选择题和非选择题均须作答在答题卡上,在本试卷上作答无效,考生在答题卡上按答题卡中注意事项的要求答题.2.考试结来后,将本试卷和答题卡一并交回.3.本试卷满分150分,考试时量120分钟.本试卷共三道大题,26个小题.如有缺页,考生须声明.亲爱的同学,请你沉着冷静,细心审题,运用技巧,准确作答,祝你成功!ー、选择题(本大题共10个小题,每个小题只有一个正确选项,请将正确的选项涂填到答题卡上.每小题4分,共40分)1.(2019·永州)-2的绝对值为A.21B.21C.-2D.2【答案】D【解析】负数的绝对值是它的相反数,所以-2的绝对值为2,故选D.2.(2019·永州)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是A.B.C.D.【答案】B【解析】把选项B中图形沿正中间竖直的一条直线折叠后能完全重合,所以选项B是轴对称图形,故选B.3.(2019·永州)2019年“五一”假期期间,我市共接待国内、外游客140.42万人次,实现旅游综合收入8.94亿元,则“旅游综合收入”用科学记数法表示正确的是A.1.4042×106B.14.042×105C.8.94×108D.0.894x109【答案】C【解析】因为1亿=1×108,所以8.94亿=8.94×108.故选C.4.(2019·永州)某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自己正前方的水果盘中,则这块西瓜的三视图是【答案】B【解析】根据三视图的定义判断选B.5.(2019·永州)下列运算正确的是A.a2+a3=a5B.(a3)2=a5C.(a·b)2=a2·b2D.baba【答案】C【解析】选项A不是同类项,不能合并;选项B属于幂的乘方,底数不变,指数相乘,即(a3)2=a6;选项C属于积的乘方,等于把积里每一个因式分别乘方,正确;选项D不是同类二次根式,不能合并.故选C.6.(2019·永州)现有一组数据:1,4,3,2,4,x.若该组数据的中位数是3,则x的值为A.1B.2C.3D.4【答案】C【解析】除x外,把这组数据由小到大排列为:1,2,3,4,4,因为中位数是3,所以只能是21(3+x)=3,因此x=3,故选C.7.(2019·永州)下列说法正确的是A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度【答案】D【解析】选项A中,可能是“SSA”的情形,不能判定两个三角形全等;选项B中,没有“对角线互相平分”这一条件,不能判定四边形为平行四边形,更不能判定为矩形;选项C中,如果一个角的补角等于它本身,那么这个角等于90°;只有选项D正确.8.(2019·永州)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为A.40B.24C.20D.15【答案】B【解析】∵∠ABD=∠CDB,∴AB∥CD,∵O是BD的中点,∴BO=DO,又∠AOB=∠COD,∴△AOB≌△COD,∴AB=CD,又AB∥CD,∴四边形ABCD是平行四边形.∵AB=AD,∴四边形ABCD是菱形.∴AC⊥BD.在Rt△ABO中,BO=21BD=4,AO=22BOAB=2245=3,∵AC=2AO=6,∴四边形ABCD的面积为21AC×BD=21×6×8=24.故选B.9.(2019·永州)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4﹕5﹕4﹕2,各基地之间的距离之比a﹕b﹕c﹕d﹕e=2﹕3﹕4﹕3﹕3(因条件限制,只有图示的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为A.甲B.乙C.丙D.丁【答案】A【解析】设a=2x,则b=3x,c=4x,d=3x,e=3x,设甲、乙、丙、丁各基地的产量分别为4y,5y,4y,2y,总运费为W,则W甲=2x×5y+3x×4y+3x×2y=28xy,W乙=2x×4y+3x×4y+5x×2y=30xy,W丙=4x×3y+3x×5y+4x×2y=35xy,W丁=3x×4y+5x×5y+4x×4y=53xy,W甲最小,故选A.10.(2019·永州)若关于x的不等式组04062mxmx有解,则在其解集中,整数的个数不可能...是A.1B.2C.3D.4【答案】C【解析】由原不等式组得426mxmx这时原不等式组的解为264mxm,故有264mm,解得m<4.当m=0时,原不等式组的解为21241x,整数解有2个;当m=-1,原不等式组的解为21341x,整数解有4个;当m=3时,原不等式组的解为2343x,整数解有1个;故选C.二、填空题(本大题共8个小题,请将答案填在答题卡上的答案栏内.每小题4分,共32分)11.(2019·永州)分解因式:x2+2x+1=.【答案】(x+1)2【解析】x2+2x+1是完全平方式,所以x2+2x+1=(x+1)2.12.(2019·永州)方程xx112的解为.【答案】x=-1【解析】去分母得,2x=x-1,解得x=-1,经检验,x=-1是原方程的解,所以原方程的解是x=-1.13.(2019·永州)使代数式1x有意义的x取值范围是.【答案】x≥1【解析】二次根式有意义的条件是被开方数为非负数,所以x-1≥0,解得x≥1.14.(2019·永州)下表是甲乙两名同学近五次数学测试(满分为100分)的成绩统计表:同学第一次第二次第三次第四次第五次甲9088929491乙9091939492根据上表数据,成绩较好且比较稳定的同学是.【答案】乙【解析】甲x=51×(90+88+92+94+91)=91,甲x=51×(90+91+93+94+92)=92,2甲S=51×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,2乙S=51×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定.15.(2019·永州)已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=.【答案】4【解析】∵∠AOB=60°,OC是∠AOB的平分线,∴∠AOC=∠COB=30°,∵DE⊥OA,∴∠DFO=90°-60°=30°,∴∠DFO=∠COB=30°,∴DF=DO,在Rt△EDO中,DO=2DE=4,∴DF=4.16.(2019·永州)如图,已知点F是△ABC的重心,连接BF并延长,交AC于点E,连接CF并延长,交AB于点D,过点F作FG∥BC,交AC于点G.设三角形EFG,四边形FBCG的面积分别为S1,S2,则S1﹕S2=.【答案】1﹕8【解析】∵F是△ABC的重心,∴EF﹕BF=1﹕2,∴EF﹕BE=1﹕3,∵FG∥BC,∴△EFG∽△EBC,∴S△EFG﹕S△EBC=EF2﹕BE2=1﹕9,∴S1﹕S2=1﹕8.17.(2019·永州)如图,直线y=4-x与双曲线y=x3交于A,B两点,过B作直线BC⊥y轴,垂足为C,则以OA为直径的圆与直线BC的交点坐标是.【答案】(2,1),(-1,1)【解析】联立y=4-x与y=x3,求得A(1,3),B(3,1),则OA的中点坐标为(21,23),OA=2231=10,所以圆的半径为210.设所求的交点坐标为(m,1),则有222)210()231()21(m,解得m=2或-1,因此设所求的交点坐标为(2,1),(-1,1).18.(2019·永州)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…+a15x15.依上述规律,解决下列问题:(1)若s=1,则a2=.(2)若s=2,则a0+a1+a2+…+a15=.【答案】(1)105(2)315【解析】(1)当s=1时,(1+x)1=1+x(1+x)2=1+2x+x2a2=1(1+x)3=1+3x+3x2+x3a2=3=1+2(1+x)4=1+4x+6x2+4x3+x4a2=6=1+2+3(1+x)5=1+5x+10x2+10x3+5x4+x5a2=10=1+2+3+4(1+x)6=1+6x+15x2+20x3+15x4+6x5+x6a2=15=1+2+3+4+5当n=15时,a2=1+2+3+4+……+14=21×(1+14)×14=105.(2)若s=2,令x=1,则(2+1)15=a0+a1+a2+…+a15,即a0+a1+a2+…+a15=315.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程,共78分)19.(2019·永州)(本小题8分)计算:(-1)2019+12×sin60°-(-3).解:原式=-1+2332+3=-1+3+3=5.20.(2019·永州)(本小题8分)先化简,再求值:11122aaaaaaa,其中a=2.解:原式=11)1)(1()1(aaaaaaaa=11aa=111aaaa=11a.当a=2时,原式=121=-1.21.(2019·永州)(本小题8分)为了测量某山(如图所示)的高度,甲在山顶A测得C处的俯角为45°,D处的俯角为30°,乙在山下测得C,D之间的距离为400米.已知B,C,D在同一水平面的同一直线上,求山高AB.(可能用到的数据:2≈1.414,3≈1.732)解:由题意知:∠ACB=45°,∠ADB=30°,设AB=x,则BC=x,在Rt△ABD中,tan∠ADB=BDAB,∴tan30°=400xx,∴33=400xx,解得x=2003+200≈546.4.答:山高AB为546.4米.22.(2019·永州)(本小题10分)在一段长为1000米的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米/分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.解:(1)250x=150(x+0.5),解得x=0.75.(2)甲返回时的速度为1000÷(10-5)=200米/分钟,200(x-5)+150(x+0.5)=1000,解得x=5.5.所以甲的总路程为1000+200(x-5)=1000+200(5.5-5)=1100(米).23.(2019·永州)(本小题10分)如图,已知⊙O是△ABC的外接圆,且BC为⊙O的直径,在劣弧AC⌒上取一点D,使CD⌒=AB⌒,将△ADC沿AD对折,得到△ADE,连接CE.(1)求证:CE是⊙O的切线;(2)若CE=3CD,劣弧CD⌒的弧长为,求⊙O的半径.解:(1)延长AD交CE于点F,由对折知,CD=ED,AC=AE,∴AD是CE的垂直平分线,∴AF⊥CE,∵CD⌒=AB⌒,∴∠CAE=∠ACB,∴AF∥BC,
本文标题:2019年永州中考数学试题及解析
链接地址:https://www.777doc.com/doc-7447714 .html