您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > (理数)高二理科数学期中试题参考答案
101234567012345产量能耗2011学年广州市铁一中学高二上学期期中考试数学(理科)参考答案一选择题(5'×10=50)12345678910ACCBCBCDAA二、填空题(5'×4=20)11.01,:200xRxp12.023xy13.214.9三、解答题(本大题共6题,共80分,解答题应写出文字说明、演算步骤或证明过程.)、15.本题满分12分解:若p真,则10a,···········2分若p假,则1a或0a;··········3分若q真,显然0a,··········4分则04102aa·········6分得21a·········7分若q假,则21a·········8分由已知,p和q有且仅有一个为真。·········9分当p真q假时,210a·········10分当p假q真时,1a·········11分综上:,121,0a··········12分16.解:(1)如下图3分2(2)yxinii1=32.5+43+54+64.5=66.5···········4分x=46543=4.5y=45.4435.2=3.5··········6分nixi12=32+42+52+62=86···········8分266.544.53.566.563ˆ0.78644.58681b···········9分ˆˆ3.50.74.50.35aYbX···········10分故线性回归方程为y=0.7x+0.35··········11分(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7100+0.35=70.35故耗能减少了90-70.35=19.65(吨)···········12分17(本题满分14分)解:(1)有序组),(nm的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个············5分(2)由)(nmmbaa,得0122nmm············7分即2)1(mn···········9分由于}4,3,2,1{m,故事件A包含的基本事件为(2,1)和(3,4),共2个··········12分81162)(AP·············14分18.解:p真,则15aa,···········3分51a或5a··········5分q真,则0)2(4842aaaa·········8分0a或2a···········10分p或q为假命题,··········11分p假且q假··········12分22a0051aaaa或或或··········13分0a或10a或5a··········14分319.解:(1)∵2e,∴2ca,∴22222caab,∴ab,··········3分∴设双曲线方程为222(0)xyaa,··········4分∵双曲线经过(4,10),∴21610a即26a,··········5分∴所求双曲线方程为22166xy。··········6分(2)∵直线系方程可化为(3)0kxym∴直线系过定点(3,)Mm。··········7分∵(3,)Mm在双曲线上,∴296,m,∴23m···········9分又双曲线焦点坐标为1(23,0)F,2(23,0)F··········10分∴12,323323FMFMmmkk···········12分∴2121(323)(323)FMFMmkk···········13分∴12FMFM·········14分20.解:(I)设动点为M,其坐标为(,)xy,当xa时,由条件可得12222,MAMAyyykkmxaxaxa即222()mxymaxa,又12(,0),(,0)AaAA的坐标满足222,mxyma故依题意,曲线C的方程为222.mxyma当1,m时曲线C的方程为22221,xyCama是焦点在y轴上的椭圆;当1m时,曲线C的方程为222xya,C是圆心在原点的圆;当10m时,曲线C的方程为22221xyama,C是焦点在x轴上的椭圆;当0m时,曲线C的方程为22221,xyamaC是焦点在x轴上的双曲线。4(II)由(I)知,当m=-1时,C1的方程为222;xya当(1,0)(0,)m时,C2的两个焦点分别为12(1,0),(1,0).FamFam对于给定的(1,0)(0,)m,C1上存在点000(,)(0)Nxyy使得2||Sma的充要条件是22200020,0,121||||.2xyayamyma由①得00||,ya由②得0||||.1maym当||150,0,21maamm即或1502m时,存在点N,使S=|m|a2;当||15,,21maam即-1m或152m时,不存在满足条件的点N,当1515,00,22m时,由100200(1),(1,)NFamxyNFamxy,可得22221200(1),NFNFxmayma令112212||,||,NFrNFrFNF,则由22121212cos,cosmaNFNFrrmarr可得,从而22121sin1sintan22cos2maSrrma,①②5于是由2||Sma,可得2212||tan||,tan.2mmamam即综上可得:当15,02m时,在C1上,存在点N,使得212||,tan2;SmaFNF且当150,2m时,在C1上,存在点N,使得212||,tan2;SmaFNF且当1515(1,)(,)22m时,在C1上,不存在满足条件的点N。
本文标题:(理数)高二理科数学期中试题参考答案
链接地址:https://www.777doc.com/doc-7459834 .html