您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 课时提升作业 十二 2.2.1
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业十二双曲线及其标准方程一、选择题(每小题5分,共25分)1.设θ∈,则关于x,y的方程-=1所表示的曲线是()A.焦点在y轴上的双曲线B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在x轴上的椭圆【解析】选C.方程即+=1,因为θ∈,所以sinθ0,cosθ0,且-cosθsinθ,故方程表示焦点在y轴上的椭圆.【补偿训练】在方程mx2-my2=n中,若mn0,则方程的曲线是()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线【解析】选D.方程mx2-my2=n可化为:-=1,因为mn0,所以-0,所以方程的曲线是焦点在y轴上的双曲线.2.(2016·枣庄高二检测)双曲线-=1上的点到一个焦点的距离为12,则到另一个焦点的距离为()A.22或2B.7C.22D.2【解析】选A.因为a2=25,所以a=5.由双曲线定义可得||PF1|-|PF2||=10,由题意知|PF1|=12,所以|PF1|-|PF2|=±10,所以|PF2|=22或2.3.设动点P到A(-5,0)的距离与它到B(5,0)距离的差等于6,则P点的轨迹方程是()A.-=1B.-=1C.-=1(x≤-3)D.-=1(x≥3)【解析】选D.由题意知,动点P的轨迹应为以A(-5,0),点B(5,0)为焦点的双曲线的右支.由c=5,a=3,知b2=16,所以P点的轨迹方程为-=1(x≥3).【误区警示】容易忽视x的取值范围而导致错选A.4.(2016·泉州高二检测)已知定点A,B且|AB|=4,动点P满足|PA|-|PB|=3,则|PA|的最小值是()A.B.C.D.5【解析】选C.由题意知,动点P的轨迹是以定点A,B为焦点的双曲线的一支(如图),从图上不难发现,|PA|的最小值是图中AP′的长度,即a+c=.5.(2016·潍坊高二检测)双曲线-y2=1(n1)的两焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△PF1F2的面积为()A.B.1C.2D.4【解析】选B.不妨设F1,F2是双曲线的左、右焦点,P为右支上一点,|PF1|-|PF2|=2,①|PF1|+|PF2|=2,②由①②解得:|PF1|=+,|PF2|=-,得:|PF1|2+|PF2|2=4n+4=|F1F2|2,所以PF1⊥PF2,又由①②分别平方后作差得:|PF1||PF2|=2,所以=|PF1|·|PF2|=1.二、填空题(每小题5分,共15分)6.(2016·唐山高二检测)已知P是双曲线-=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为.【解析】由条件知a2=64,即a=8,c2=b2+a2=100,c=10,所以双曲线右支上的点到左焦点F1的最短距离a+c=1817,故点P在双曲线左支上.所以|PF2|-|PF1|=2a=16,即|PF2|=16+|PF1|=33.答案:33【误区警示】本题易直接利用定义求解,忽视右支上的点到左焦点的最短距离为a+c,而出现错误结论|PF2|=1或|PF2|=33.【补偿训练】在平面直角坐标系xOy中,已知△ABC的顶点A(-6,0)和C(6,0),若顶点B在双曲线-=1的左支上,则=.【解题指南】由正弦定理可将转化为边的比,而△ABC的顶点A,C已知,故边AC长可求,B在双曲线上,由定义可求|BC|-|BA|.【解析】由条件可知|BC|-|BA|=10,且|AC|=12,又在△ABC中,有===2R,从而==.答案:7.(2016·烟台高二检测)已知双曲线中心在坐标原点且一个焦点为F1(-,0),点P位于该双曲线上,线段PF1的中点坐标为(0,2),则该双曲线的方程是.【解析】设双曲线方程为-=1,因为c=,c2=a2+b2,所以b2=5-a2,所以-=1.由于线段PF1的中点坐标为(0,2),则P点的坐标为(,4).代入双曲线方程得-=1,解得a2=1或a2=25(舍去),所以双曲线方程为x2-=1.答案:x2-=18.已知双曲线-=1上一点M的横坐标为5,则点M到左焦点的距离是.【解题指南】利用双曲线的定义求解.【解析】由于双曲线-=1的右焦点为F(5,0),将xM=5代入双曲线方程可得|yM|=,即为点M到右焦点的距离,由双曲线的定义知M到左焦点的距离为+2×3=.答案:三、解答题(每小题10分,共20分)9.已知双曲线与椭圆+=1有相同的焦点,且与椭圆的一个交点的纵坐标为4,求双曲线的方程.【解析】椭圆的焦点为F1(0,-3),F2(0,3),故可设双曲线方程为-=1(a0,b0),且c=3,a2+b2=9.由条件知,双曲线与椭圆有一个交点的纵坐标为4,可得两交点的坐标为A(,4),B(-,4),由点A在双曲线上知,-=1.解方程组得所以所求双曲线的方程为-=1.10.如图,在△ABC中,已知|AB|=4,且三内角A,B,C满足2sinA+sinC=2sinB,建立适当的坐标系,求顶点C的轨迹方程.【解析】以AB边所在的直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系如图所示,则A(-2,0),B(2,0).由正弦定理,得sinA=,sinB=,sinC=(R为△ABC的外接圆半径).因为2sinA+sinC=2sinB,所以2a+c=2b,即b-a=,从而有|CA|-|CB|=|AB|=2|AB|.由双曲线的定义知,点C的轨迹为双曲线的右支(除去与x轴的交点),因为a=,c=2,所以b2=c2-a2=6,即所求轨迹方程为-=1(x)一、选择题(每小题5分,共10分)1.(2016·合肥高二检测)已知双曲线-=1的焦点为F1,F2,点M在双曲线上,且MF1⊥x轴,则F1到直线F2M的距离为()A.B.C.D.【解析】选C.设F1到直线F2M的距离为d,不妨设点F1(-3,0),容易计算得出|MF1|=,|MF2|-|MF1|=2.解得|MF2|=.而|F1F2|=6,在直角三角形MF1F2中,由|MF1|·|F1F2|=|MF2|·d,求得F1到直线F2M的距离d为.2.(2016·沈阳高二检测)已知点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是()A.6B.8C.10D.12【解析】选C.由双曲线的知识可知:C1:-=1的两个焦点分别是F1(-5,0)与F2(5,0),且|PF1|-|PF2|=8,而这两点正好是两圆(x+5)2+y2=1和(x-5)2+y2=1的圆心,两圆(x+5)2+y2=1和(x-5)2+y2=1的半径分别是r1=1,r2=1,所以|PQ|max=|PF1|+1,|PR|min=|PF2|-1,所以|PQ|-|PR|的最大值为:(|PF1|+1)-(|PF2|-1)=|PF1|-|PF2|+2=8+2=10.【补偿训练】(2016·太原高二检测)设F1,F2分别是双曲线x2-=1的左、右焦点.若点P在双曲线上,有·=0,则|+|=()A.B.2C.D.2【解析】选B.因为·=0,所以PF1⊥PF2,即△PF1F2为直角三角形,所以|PF1|2+|PF2|2=|F1F2|2=(2)2=40,|+|====2.二、填空题(每小题5分,共10分)3.(2016·黄冈高二检测)已知F是双曲线-=1的左焦点,A(1,4),点P是双曲线右支上的动点,则|PF|+|PA|的最小值是.【解析】由双曲线-=1,得c=4,所以左焦点F(-4,0),右焦点F′(4,0),由双曲线的定义得:|PF|-|PF′|=2a=4,所以|PF|+|PA|=4+|PF′|+|PA|≥4+|AF′|=4+=9,此时P为AF′与双曲线的交点,即|PF|+|PA|的最小值为9.答案:94.(2016·杭州高二检测)已知双曲线的两个焦点为F1(-,0),F2(,0),M是此双曲线上一点,若·=0,||·||=2,则该双曲线的方程是.【解析】设双曲线的方程为-=1(a0,b0),由题意得||MF1|-|MF2||=2a,|MF1|2+|MF2|2=(2)2=20,又因为||·||=2,所以|MF1|2+|MF2|2-2|MF1||MF2|=4a2,即20-2×2=4a2,所以a2=4,b2=c2-a2=5-4=1,所以双曲线的方程为-y2=1.答案:-y2=1三、解答题(每小题10分,共20分)5.当0°≤α≤180°时,方程x2cosα+y2sinα=1表示的曲线怎样变化?【解析】(1)当α=0°时,方程为x2=1,它表示两条平行直线x=1和x=-1.(2)当0°α90°时,方程为+=1.①当0°α45°时,0,它表示焦点在y轴上的椭圆.②当α=45°时,它表示圆x2+y2=.③当45°α90°时,0,它表示焦点在x轴上的椭圆.(3)当α=90°时,方程为y2=1,它表示两条平行直线y=1和y=-1.(4)当90°α180°时,方程为-=1,它表示焦点在y轴上的双曲线.(5)当α=180°时,方程为x2=-1,它不表示任何曲线.【误区警示】解答本题时容易忽略α=90°的情况.6.(2016·济南高二检测)已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,求P到x轴的距离.【解析】因为||PF1|-|PF2||=2,所以|PF1|2-2|PF1|·|PF2|+|PF2|2=4,所以|PF1|2+|PF2|2=4+2|PF1|·|PF2|,由余弦定理知|PF1|2+|PF2|2-|F1F2|2=2|PF1|·|PF2|cos60°,得|PF1|2+|PF2|2=|F1F2|2+|PF1|·|PF2|,又a=1,b=1,所以c==,所以|F1F2|=2c=2,所以4+2|PF1||PF2|=|PF1|·|PF2|+8,所以|PF1|·|PF2|=4.设P到x轴的距离为|y0|,=|PF1||PF2|sin60°=|F1F2|·|y0|,所以×4×=×2|y0|,所以|y0|==.即P点到x轴的距离为.关闭Word文档返回原板块
本文标题:课时提升作业 十二 2.2.1
链接地址:https://www.777doc.com/doc-7460411 .html