您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 积分表127个公式的推导(修正版)
高等数学积分表公式推导目录(一)含有bax的积分(1~9)·······················································1(二)含有bax的积分(10~18)···················································5(三)含有22ax的积分(19~21)····················································9(四)含有)0(2abax的积分(22~28)············································11(五)含有)0(2acbxax的积分(29~30)········································14(六)含有)0(22aax的积分(31~44)·········································15(七)含有)0(22aax的积分(45~58)·········································24(八)含有)0(22axa的积分(59~72)·········································37(九)含有)0(2acbxa的积分(73~78)····································48(十)含有或))((xbax的积分(79~82)···························51(十一)含有三角函数的积分(83~112)···········································55(十二)含有反三角函数的积分(其中0a)(113~121)·······················68(十三)含有指数函数的积分(122~131)··········································73(十四)含有对数函数的积分(132~136)··········································78(十五)含有双曲函数的积分(137~141)··········································80(十六)定积分(142~147)····························································81附录:常数和基本初等函数导数公式·········································85说明·····················································································86bxax-1-(一)含有bax的积分(1~9)CbaxlnabaxdxbaxtCtlnadttabaxdxdtadx,adxdtttbaxabxxbax)x(fCbaxlnabaxdx.11111)0(}|{111代入上式得:将,则令的定义域为被积函数证明:CbaxμadxbaxbaxtCtμadttadxbaxdtadx,adxdttbaxμCbaxμadxbax.μμμμμμμ111)()1(1)()1(11)(1,1)()()1(1)(2代入上式得:将则令证明:CbaxlnbbaxadxbaxxbaxtCtlnbtaCtlnabatdttbadtadttb1adta·tbtadxbaxxdtadx,btax,ttbaxabx|xbaxx)x(fCbaxlnbbaxadxbaxx.22222222111111111)0(}{13代入上式得:将则令的定义域为被积函数证明:-2-CbaxlnbbaxbbaxadxbaxxCbaxlnabbaxdbaxabdxbaxbaCbaxlnabxabbaxdbaxabdxabaxdbaxbbaxabdxbaxabxaCbaxadxbaxadxbaxbadxbaxabxadxbaxadxbaxbabxbaxadxbaxxCbaxlnbbaxbbaxadxbaxx)(2)(211)(1122)(122)(221)(21)(1121)(1)2)(1)(2)(211.4223233232222323323321232222222222232由以上各式整理得:证明:CxbaxlnbCbaxxlnbCbaxlnbxlnb)bax(dbaxbdxxbdxbaxbadxxbdx)bax(babxbaxxdxbabAbBAabxaxbaxbaxBxbaxxabx|xbaxx)x(fCxbaxlnbbaxxdx.11111111111]1[)(B1A10AB)(AB)A(1,A)(1}{)(11)(5于是有则设的定义域为被积函数证明:blogblogaa1提示:-3-CxbaxlnbabxCbaxlnbabxxlnbabaxdbaxbadxxbdxxbadxbaxbadxxbdxxbabaxxdxbaCbbaBbaBAbCAabaBAbxaxCxbaxbaxxbaxCxBxbaxxabxxbaxxxfCxbaxlnbabxbaxxdx11)(11111111)(1BA1001B)(C)(A)B()(A1,A)(1}|{)(1)(1)(.6222222222222222222222于是有即则设的定义域为被积函数证明:CbaxbbaxlnaCbaxabbaxlnabaxdbaxabbaxdbaxadxbaxabdxbaxadxbaxxabBaBAbAaxBAbaxbaxxbaxBbaxAbaxxabx|xbaxx)x(fCbaxbbaxlnadxbaxx.1)(1)()(1)(11)(111)(1A01)(AB)A(,)()(}{)(1)(72222222222222于是有即则设的定义域为被积函数证明:-4-CbaxbbaxlnbbaxadxbaxxbaxtCtbtlnbtaCtlnabtatabdttabdtadttabdttabttbdxbaxxtabttbtatbbaxxdtadx,btax,ttbaxabx|xbaxx)x(fCbaxbbaxlnbbaxadxbaxx.23222333323323223222222222222222232221)()2(12112112)(2)()(11)0(}{)(21)(8代入上式得:将则令的定义域为被积函数证明:C|xbax|ln·bbaxbCbax·bb||axlnb|x|lnbdxbaxbadxbaxbadxxbbaxxdxbaDbaBbA1Ab0DBbAab20BaAaAbDBbAab2xBaAaxDxBbxBaxAabx2AbxAaDxbaxBxbaxA1baxDbaxBxAbaxxabx|xbaxx)x(fC|xbax|lnbbaxbbaxxdx.222222222222222222222221)(11111)(1111)(1)()()()()()(1}{)(1·1)(1)(9于是有则设:的定义域为证明:被积函数-5-(二)含有bax的积分(10~18)CbaxaCbaxabaxdbaxadxbaxCbaxadxbax3121213)(32)(21111)()(1)(32.10证明:CbaxbaxaCbaxbbaxadxbaxxbaxtCbtatCtabtadtabdtadtbttadtattabtdxbaxxtabtbaxxdtatdxabtxttbaxCbaxbaxadxbaxx32322233252325224222232)()23(152)(]5)(3[152)53(15232523252)(22,2,,)0()()23(152.11代入上式得:将则令证明:CbaxbabxxaabaxbbabxbxabaxadxbaxxbaxtCbtbtatCtabtabtaCtabtabtadttabdttabdttadtbttbttadxbaxxabttbttabtbaxxdtatdxabtxttbaxCbaxbabxxaadxbaxx3222322223322243353332731432132163432326332532232522222322232)()81215(1052)(4235301515)(1052)423515(1052543272411421126112422)2(22)(,2,,)0()()81215(1052.12代入上式得:将则令证明:-6-CbaxbaxaCbaxabbaxbaxadxbaxxbaxtCtabtaCtabtabdtadttadtatatbtdxbaxxdtatdxabtxttbaxCbaxbaxadxbaxx)()2(32)(2)()(3223222112222,2,,)0()()2(32.132222322122222222代入上式得:将则令证明:CbaxbabxxaaCbaxbaxbbabxbxabaxadxbaxxbaxtCbtbtatCtbtbtadttabdtbadttadtbtbtadtattabtdxbaxxdtatdxabtxttbaxCbaxbabxxaadxbaxx)()843(152)()(1015)2(3)(152)10153(152)3251(2422)2(221)(,2,,)0()()843(152.142223222232224332532323432243222222232代入上式得:将则令证明:-7-
本文标题:积分表127个公式的推导(修正版)
链接地址:https://www.777doc.com/doc-7466452 .html