您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 山东省泰安市2016届高三上期末数学试卷(文)含答案解析
2015-2016学年山东省泰安市高三(上)期末数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2}B.{4,6}C.{1,3,5}D.{4,6,7,8}2.设{an}是公差为正数的等差数列,若a1+a3=10,a1a3=16,则a12等于()A.25B.30C.35D.403.已知p:0<a<4,q:函数y=x2﹣ax+a的值恒为正,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列命题错误的是()A.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β5.一元二次不等式﹣x2+4x+12>0的解集为()A.(﹣∞,2)B.(﹣1,5)C.(6,+∞)D.(﹣2,6)6.函数f(x)=2x﹣6+lnx的零点所在的区间()A.(1,2)B.(3,4)C.(2,3)D.(4,5)7.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于M、N两点,若△MNF2为等腰直角三角形,则该椭圆的离心率e为()A.B.C.D.8.设f(x)在定义域内可导,其图象如图所示,则导函数f′(x)的图象可能是()A.B.C.D.9.已知函数,其图象与直线y=﹣2相邻两个交点的距离为π.若f(x)>1对于任意的恒成立,则φ的取值范围是()A.B.C.D.10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若tanα=,则=.12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是.13.如果实数x,y满足条件,则z=x+y的最小值为.14.方程x2﹣1=ln|x|恰有4个互不相等的实数根x1,x2,x3,x4,则x1+x2+x3+x4=.15.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为.三、解答题:本大题共有6小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.△ABC的内角A、B、C所对的边a、b、c,且asinB﹣bcosA=0(Ⅰ)求角A(Ⅱ)若a=6,b+c=8,求△ABC的面积.17.如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于点P(Ⅰ)证明:PF∥面ECD;(Ⅱ)证明:AE⊥面ECD.18.已知正项等比数列{an}的前n项和为Sn,且S2=6,S4=30,n∈N*,数列{bn}满足bn•bn+1=an,b1=1(I)求an,bn;(Ⅱ)求数列{bn}的前2n项和T2n.19.如图,是一曲边三角形地块,其中曲边AB是以A为顶点,AC为对称轴的抛物线的一部分,点B到AC边的距离为2Km,另外两边AC、BC的长度分别为8Km,2Km.现欲在此地块内建一形状为直角梯形DECF的科技园区.求科技园区面积的最大值.20.已知椭圆C:的右顶点A(2,0),且过点(Ⅰ)求椭圆C的方程;(Ⅱ)过点B(1,0)且斜率为k1(k1≠0)的直线l于椭圆C相交于E,F两点,直线AE,AF分别交直线x=3于M,N两点,线段MN的中点为P,记直线PB的斜率为k2,求证:k1•k2为定值.21.已知函数f(x)=lnx+ax(a∈R)在点(1,f(1))处切线方程为y=2x﹣1(I)求a的值(Ⅱ)若﹣≤k≤2,证明:当x>1时,(Ⅲ)若k>2且k∈z,对任意实数x>1恒成立,求k的最大值.2015-2016学年山东省泰安市高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2}B.{4,6}C.{1,3,5}D.{4,6,7,8}【考点】Venn图表达集合的关系及运算.【分析】由韦恩图可知阴影部分表示的集合为(CUA)∩B,根据集合的运算求解即可.【解答】解:全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},由韦恩图可知阴影部分表示的集合为(CUA)∩B,∵CUA={4,6,7,8},∴(CUA)∩B={4,6}.故选B.2.设{an}是公差为正数的等差数列,若a1+a3=10,a1a3=16,则a12等于()A.25B.30C.35D.40【考点】等差数列的通项公式.【分析】由已知得a1<a3,且a1,a3是方程x2﹣10x+16=0的两个根,解方程x2﹣10x+16=0,得a1=2,a3=8,由此求出公差,从而能求出a12.【解答】解:∵{an}是公差为正数的等差数列,a1+a3=10,a1a3=16,∴a1<a3,且a1,a3是方程x2﹣10x+16=0的两个根,解方程x2﹣10x+16=0,得a1=2,a3=8,∴2+2d=8,解得d=3,∴a12=a1+11d=2+11×3=35.故选:C.3.已知p:0<a<4,q:函数y=x2﹣ax+a的值恒为正,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:若函数y=x2﹣ax+a的值恒为正,即x2﹣ax+a>0恒成立,则判别式△=a2﹣4a<0,则0<a<4,则p是q的充要条件,故选:C4.下列命题错误的是()A.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β【考点】平面与平面之间的位置关系.【分析】命题A,B可以通过作图说明;命题C可以直接进行证明;命题D可以运用反证法的思维方式说明是正确的.【解答】解:A、如图,平面α⊥平面β,α∩β=l,l⊂α,l不垂直于平面β,所以不正确;B、如A中的图,平面α⊥平面β,α∩β=l,a⊂α,若a∥l,则a∥β,所以正确;C、如图,设α∩γ=a,β∩γ=b,在γ内直线a、b外任取一点O,作OA⊥a,交点为A,因为平面α⊥平面γ,所以OA⊥α,所以OA⊥l,作OB⊥b,交点为B,因为平面β⊥平面γ,所以OB⊥β,所以OB⊥l,又OA∩OB=O,所以l⊥γ.所以正确.D、若平面α内存在直线垂直于平面β,根据面面垂直的判定,则有平面α垂直于平面β,与平面α不垂直于平面β矛盾,所以,如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β,正确;故选:A.5.一元二次不等式﹣x2+4x+12>0的解集为()A.(﹣∞,2)B.(﹣1,5)C.(6,+∞)D.(﹣2,6)【考点】一元二次不等式的解法.【分析】把原不等式化为(x+2)(x﹣6)<0,求出不等式对应方程的实数根,即可写出不等式的解集.【解答】解:不等式﹣x2+4x+12>0可化为x2﹣4x﹣12<0,即(x+2)(x﹣6)<0;该不等式对应方程的两个实数根为﹣2和6,所以该不等式的解集为(﹣2,6).故选:D.6.函数f(x)=2x﹣6+lnx的零点所在的区间()A.(1,2)B.(3,4)C.(2,3)D.(4,5)【考点】函数零点的判定定理.【分析】据函数零点的判定定理,判断f(1),f(2),f(3),f(4)的符号,即可求得结论.【解答】解:f(1)=2﹣6<0,f(2)=4+ln2﹣6<0,f(3)=6+ln3﹣6>0,f(4)=8+ln4﹣6>0,∴f(2)f(3)<0,∴m的所在区间为(2,3).故选:C.7.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于M、N两点,若△MNF2为等腰直角三角形,则该椭圆的离心率e为()A.B.C.D.【考点】椭圆的简单性质.【分析】把x=﹣c代入椭圆,解得y=±.由于△MNF2为等腰直角三角形,可得=2c,由离心率公式化简整理即可得出.【解答】解:把x=﹣c代入椭圆方程,解得y=±,∵△MNF2为等腰直角三角形,∴=2c,即a2﹣c2=2ac,由e=,化为e2+2e﹣1=0,0<e<1.解得e=﹣1+.故选C.8.设f(x)在定义域内可导,其图象如图所示,则导函数f′(x)的图象可能是()A.B.C.D.【考点】利用导数研究函数的单调性.【分析】由f(x)的图象可得在y轴的左侧,图象下降,f(x)递减,y轴的右侧,图象先下降再上升,最后下降,即有y轴左侧导数小于0,右侧导数先小于0,再大于0,最后小于0,对照选项,即可判断.【解答】解:由f(x)的图象可得,在y轴的左侧,图象下降,f(x)递减,即有导数小于0,可排除C,D;再由y轴的右侧,图象先下降再上升,最后下降,函数f(x)递减,再递增,后递减,即有导数先小于0,再大于0,最后小于0,可排除A;则B正确.故选:B.9.已知函数,其图象与直线y=﹣2相邻两个交点的距离为π.若f(x)>1对于任意的恒成立,则φ的取值范围是()A.B.C.D.【考点】正弦函数的图象.【分析】根据条件先求出函数的周期,计算出ω的值,根据不等式恒成立,结合三角函数的解法求出不等式的解即可得到结论.【解答】解:∵函数,其图象与直线y=﹣2相邻两个交点的距离为π.∴函数的周期T=π,即=π,即ω=2,则f(x)=2sin(2x+φ),若f(x)>1则2sin(2x+φ)>1,则sin(2x+φ)>,若f(x)>1对于任意的恒成立,故有﹣+φ≥2kπ++,且+φ≤2kπ+,求得φ≥2kπ+,且φ≤2kπ+,k∈Z,故φ的取值范围是[2kπ+,2kπ+],k∈Z,∵|φ|≤,∴当k=0时,φ的取值范围是[,],故选:B.10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.【考点】函数的值.【分析】由已知得a≤﹣1,a﹣2b=a﹣ea﹣1,再由函数y=﹣ex+a﹣1,(x≤﹣1)单调递减,能求出实数a﹣2b的范围.【解答】解:∵函数f(x)=,a<b,f(a)=f(b),∴a≤﹣1,∵f(a)=ea,f(b)=2b﹣1,且f(a)=f(b),∴ea=2b﹣1,得b=,∴a﹣2b=a﹣ea﹣1,又∵函数y=﹣ex+a﹣1(x≤﹣1)为单调递减函数,∴a﹣2b<f(﹣1)=﹣e﹣1=﹣,∴实数a﹣2b的范围是(﹣∞,﹣).故选:B.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若tanα=,则=.【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数关系式求出sinα和cosα,再由=,能求出结果.【解答】解:∵tanα=,∴sinα=,cos,或,cos,∴=﹣sin2α===.故答案为:.12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是﹣2.【考点】直线与圆的位置关系.【分析】由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.【解答】解:圆x2+y2﹣2ax+a=0可化为(x﹣a)2+y2=a2﹣a∴圆心为:(a,0),半径为:圆心到直线的距离为:d==.∵直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,∴a2+1+1=a2﹣a,∴a=﹣2.故答案为:﹣2.13.如果实数x
本文标题:山东省泰安市2016届高三上期末数学试卷(文)含答案解析
链接地址:https://www.777doc.com/doc-7473713 .html